Advertisement

Neurochemical Research

, Volume 18, Issue 11, pp 1145–1149 | Cite as

Monoamine oxidase inhibitors and the cheese effect

  • Mary C. Anderson
  • Farris Hasan
  • John M. McCrodden
  • Keith F. Tipton
Original Articles

Abstract

The behavior of inhibitors of monoamine oxidase-A (MAO-A) is considered in terms of the possibility of having an effective antidepressant that does not give rise to hypertensive interactions with dietary tyramine. Studies with punch-biopsy samples of human intestine and rat intestinal samples show MAO-A to be the predominant form of the enzyme in both species. Transport studies with everted rat intestinal preparations indicate that tyramine is extensively metabolized during transport through the intestine. Selective inhibition of MAO-A by clorgyline results in a large increase in the amount of unchanged tyramine transported, whereas selective inhibition of MAO-B with L-deprenyl (selegiline) has no significant effect. The behavior of reversible MAO-A inhibitors can significantly reduce, but not entirely eliminate, these effects on the intestinal metabolism of tyramine, but only if the inhibition is competitive in nature.

Key Words

Tyramine monoamine oxidase-A (MAO-A) intestine clorgyline L-deprenyl brofaromine moclobemide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tipton, K. F. 1989. Monoamine oxidase inhibitors as antidepressants. Pages 1–24,in Tipton, K. F. and Youdim, M. B. H. (eds.) Biochemical and Pharmacological Aspects of Depression. Taylor & Francis, London.Google Scholar
  2. 2.
    Blackwell, B. 1963. Hypertensive crisis due to monoamine oxidase inhibitors. Lancet (ii): 849–951.Google Scholar
  3. 3.
    Davis, D. S., Tasuhara, H., Boobis, A. R., and George, C. F. 1984. The effects of reversible and irreversible inhibitors of monoamine oxidase on tyramine deamination in dog intestine. Pages 443–448in Tipton, K. F., Dostert, P. and Strolin Benedetti, A. (eds.) Monoamine Oxidase and Disease. Academic Press, London.Google Scholar
  4. 4.
    Dostert, P. 1984. Myth and reality of the classical MAO inhibitors, reasons for seeking a new generation. Pages 487–497in Tipton, K. F., Dostert, P. and Strolin Benedetti, A. (eds.) Monoamine Oxidase and Disease. Academic Press, London.Google Scholar
  5. 5.
    Da Prada, M., Zürcher, G., Würthrich, I., and Haefely, W. E. 1988. Ontyramine, food beverages and the reversible MAO inhibitor moclobemide. J. Neural. Transmiss. 26 (Suppl.): 33–56.Google Scholar
  6. 6.
    Wheatley, A. M., and Tipton, K. 1987. Determination of tyramine in alcoholic and non-alcoholic beers by high performance liquid chromatography with electrochemical detection. J. Food. Biochem. 11:133–142.Google Scholar
  7. 7.
    Sen, N. P. 1969. Analysis and significance of tyramine in foods. J. Food. Sci. 34:22–26.Google Scholar
  8. 8.
    Dollery, C. T., Brown, M. J., Davies, D. S., and Strolin Benedetti, M. 1984. Pressor amines and monoamine oxidase inhibitors. Pages 429–441in Tipton, K. F., Dostert, P., and Strolin Benedetti, A. (eds.) Monoamine Oxidase and Disease. Academic Press, London.Google Scholar
  9. 9.
    Youdim, M. B. H., Finberg, J. P. M., and Tipton, K. F. 1988. Monoamine oxidase. Pages 119–192in Trendelenburg, U. and Weiner, N. (eds.) Handbook of Experimental Pharmacology, vol. 90. Springer Verlag, Berlin.Google Scholar
  10. 10.
    Tipton, K. F. 1985. Determination of monoamine oxidase. Meth. Find. Exp. Clin. Pharmacol. 7:361–367.Google Scholar
  11. 11.
    Hasan, F., McCrodden, J. M., Kennedy, N. P., and Tipton, K. F. 1988. The involvement of intestinal monoamine oxidase in the transport and metabolism of tyramine. J. Neural. Transmiss. 26, (Suppl.): 1–9.Google Scholar
  12. 12.
    Strolin Benedetti, M., Boucher, T., Carlsson, A., and Fowler, C. J. 1983. Intestinal metabolism of tyramine by both forms of monoamine oxidase in the rat. Biochem. Pharmacol. 32:47–52.PubMedGoogle Scholar
  13. 13.
    Valoti, M., Tipton, K. F., and Sgaragli, G. P. 1992. Oxidative ring-coupling of tyrosine and its derivatives by purified rat intestinal peroxidase. Biochem. Pharmacol. 43:945–951.PubMedGoogle Scholar
  14. 14.
    Rein, G., Glover, V., and Sandler, M. 1982. Multiple forms of phenolsulphotransferases in human tissues. Biochem. Pharmacol. 31:1893–1897.PubMedGoogle Scholar
  15. 15.
    Biek, P. R., Kemmler, H., Henriot, S., and Tipton, K. F. 1988. Evidence for “local” gastroinestinal effects of MAO inhibition on metabolism and transport of tyramine in human subjects. Pharmacol. Res. Commun. 20:129–130.PubMedGoogle Scholar
  16. 16.
    Mendis, N., Pare, C. M. B., Sandler, M., Glover, V., and Stern, G. M. 1981. Is the failure of (−)-deprenyl, a selective monoamine oxidase-B inhibitor, to alleviate depression related to freedom from the cheese effect? Psychopharmacol. 73:87–90.Google Scholar
  17. 17.
    Pare, C. M. B. 1984. Clinical studies with monoamine oxidase inhibitors and tricyclic antidepressants. Pages 469–478in Tipton, K. F., Dostert, P. and Strolin Benedetti, A. (eds.) Monoamine Oxidase and Disease. Academic Press, London.Google Scholar
  18. 18.
    Erwin, V. G., and Deitrich, R. A. 1971. The labellingin vivo of monoamine oxidase by [14C]-pargyline: a tool for studying the synthesis of the enzyme. Mol. Pharmacol. 7:219–228.PubMedGoogle Scholar
  19. 19.
    Della Corte, L., and Tipton, K. F. 1980. The turnover of the A- and B-forms of monoamine oxidase in rat liver. Biochem. Pharmacol. 29:811–815.Google Scholar
  20. 20.
    Neff, N. H., and Goridis, C. 1972. Neuronal monoamine oxidase: specific enzyme types and their rates of formation. Adv. Biochem. Psychopharmacol. 5:307–323.PubMedGoogle Scholar
  21. 21.
    Callingham, B. A., Mazel, P. and Porter, J. C. 1985. Some properties of amine oxidase activities in the rat intestine. Br. J. Pharmacol. 86:553 P.Google Scholar
  22. 22.
    Arnett, C. D., Fowler, J. S., MarGregor, R. R., Schyler, D. J., Wolf, A. P., Langrström, B., and Haldin, C. J. 1987. Turnover of brain monoamine oxidase measureed in vivo by positron emission tomography using L-[14C] deprenyl. J. Neurochem. 49:522–527.PubMedGoogle Scholar
  23. 23.
    Felner, A. E., and Waldmeier, P. C. 1979. Cumulative effects of irreversible MAO inhibitors in vivo. Biochem. Pharmacol. 28:995–1002.PubMedGoogle Scholar
  24. 24.
    Waldmeier, P. C., Felner, A. E., and Tipton, K. F. 1983. The monoamine oxidase inhibiting properties of CGP 11305A. Eur. J. Pharmacol. 94:73–83.PubMedGoogle Scholar
  25. 25.
    Tipton, K. F. and Fowler, C. J. 1984. The kinetics of monoamine oxidase inhibitors in relation to their clinical behaviour. Pages 27–40 in Tipton, K. F., Dostert, P. and Strolin Benedetti, A. (eds.) Monoamine Oxidase and Disease. Academic Press, London.Google Scholar
  26. 26.
    Da Prada, M., Kettler, R. M., Cesura, A. M., and Richards 1988. Reversible enzyme-activated monoamine oxidase inhibitors: new advances. Pharmacol. Res. Commun. 20, Suppl. 4:21–23.PubMedGoogle Scholar
  27. 27.
    Anderson, M. C., Waldmeier, P. C., and Tipton, K. F. 1991. The inhibition of monoamine oxidase by brofaromine. Biochem. Pharmacol. 41:1871–1877.PubMedGoogle Scholar
  28. 28.
    Da Prada, M., Kettler, R., Keller, H. H., Cesura, A. M., Richards, J. G., Saura Marti, J., Mugli-Maniglio, D., Wyss, P-C., Kyburz, E., and Imhof, R. 1990. From moclobemide to Ro 196327: the development of a new class of reversible, selective MAO-A and MAO-B inhibitors J. Neural Transmiss. 29 (Suppl.): 279–292.Google Scholar
  29. 29.
    Callingham, B. A. 1989. Biochemical aspects of the pharmacology of moclobemide- The implications of animal studies. Br. J. Psychiat. 115 (Suppl. 6):53–60.Google Scholar
  30. 30.
    Knoll, J. 1989. The pharmacology of selegiline/(−) deprenyl. New aspects. Acta Neurol. Scand. 126:83–91.Google Scholar
  31. 31.
    Knoll, J. 1993. The pharmacological basis of the beneficial effects of (−) deprenyl (selegiline) in Parkinson's and Alzheimer's diseases. J. Neural Transmiss. (in press).Google Scholar
  32. 32.
    Parkinson Study Group. 1989. Effect of deprenyl on the progression of disability in early Parkinson's disease. New. Engl. J. Med. 321:1364–1371.Google Scholar
  33. 33.
    Tetrud, J. W. and Langston, J. W. 1989. The effect of deprenyl on the natural history of Parkinson's disease. Science 245:519–522.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Mary C. Anderson
    • 1
  • Farris Hasan
    • 1
  • John M. McCrodden
    • 1
  • Keith F. Tipton
    • 1
  1. 1.Department of BiochemistryTrinity CollegeDublin 2Ireland

Personalised recommendations