Two algorithms for constructing a Delaunay triangulation

  • D. T. Lee
  • B. J. Schachter


This paper provides a unified discussion of the Delaunay triangulation. Its geometric properties are reviewed and several applications are discussed. Two algorithms are presented for constructing the triangulation over a planar set ofN points. The first algorithm uses a divide-and-conquer approach. It runs inO(N logN) time, which is asymptotically optimal. The second algorithm is iterative and requiresO(N2) time in the worst case. However, its average case performance is comparable to that of the first algorithm.

Key words

Delaunay triangulation triangulation divide-and-conquer Voronoi tessellation computational geometry analysis of algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Besag, “Spatial interaction and the statistical analysis of lattice systems,”J. Royal Stat. Soc. B 36 (2):192–236 (1974).Google Scholar
  2. 2.
    D. J. Bogue, “The Structure of the Metropolitan Community,” University of Michigan Contributions of the Institute of Human Adjustment Social Science, University of Michigan, Ann Arbor, Michigan (1949).Google Scholar
  3. 3.
    B. Delaunay, “Sur la sphère vide,”Bull. Acad. Science USSR VII:Class. Sci. Mat. Nat. 793–800 (1934).Google Scholar
  4. 4.
    H. Fuchs and Z. M. Kedem, “The Highly Intelligent Tablet as an Efficient Printing Device for Interactive Graphics,” University of Texas (Dallas) (1979). Program in Math. Science (1979).Google Scholar
  5. 5.
    M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan, “Triangulating a simple polygon,”Inform. Proc. Letters 7:175–179 (June 1978).Google Scholar
  6. 6.
    E. N. Gilbert, “Random subdivision of space into crystals,”Ann. Math. Stat. 33: 958–972 (1962).Google Scholar
  7. 7.
    P. J. Green and R. Sibson, “Computing Dirichlet tesselations in the plane,”Computer J. 21 (2):168–173 (July 1978).Google Scholar
  8. 8.
    T.Kiang, “Random fragmentation in two and three dimensions,”Z. Astrophysik 64:433–439 (1966).Google Scholar
  9. 9.
    C. L. Lawson, “Generation of a Triangular Grid with Applications to Contour Plotting,” Technical Memo. 299, Jet Propulsion Laboratory, Pasadena, California (February 1972).Google Scholar
  10. 10.
    C. L. Lawson, “Software forC 1 surface interpolation,”in Mathematical Software III, J. Rice, Ed. (Academic Press, New York, 1977).Google Scholar
  11. 11.
    D. T. Lee, “On Finding κ-Nearest Neighbors in the Plane,” Technical Report Eng. 76-2216, Coordinated Science Laboratory, University of Illinois, Urbana, Illinois (1976).Google Scholar
  12. 12.
    D. T. Lee, “Proximity and Reachability in the Plane,” Ph.D. Thesis, Coordinated Science Laboratory Report ACT-12, University of Illinois, Urbana, Illinois (1978).Google Scholar
  13. 13.
    D. T. Lee, “Two-dimensional Voronoi diagrams in theL p-metric,”J. ACM (accepted for publication).Google Scholar
  14. 14.
    D. T. Lee and C. K. Wong, “Voronoi diagrams inL 1 (L ) metrics with two-dimensional storage applications,”SIAM J. Computing (accepted for publication).Google Scholar
  15. 15.
    B. A. Lewis and J. S. Robinson, “Triangulation of planar regions with applications,”Computer J. 21 (4):324–332 (Nov. 1978).Google Scholar
  16. 16.
    E. L. Lloyd, “On Triangulation of a Set of Points in the Plane,” Technical Report MIT/LCS/TM-88, Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (May 1977).Google Scholar
  17. 17.
    P. E. Lloyd and P. Dicken,Location in Space: A Theoretical Approach to Economic Geography (Harper and Row, New York, 1972).Google Scholar
  18. 18.
    B. Matern, “Spatial variation,”Medd. Statens Skogsforskninginstit. 36 (5):1–144 (1960).Google Scholar
  19. 19.
    D. H. McLain, “Two dimensional interpolation from random data,”Computer J. 19 (2):178–181 (1976); Errata,Computer J. 19 (4):384 (1976).Google Scholar
  20. 20.
    R. E. Miles, “Solution to problem 67-15 (Probability distribution of a network of triangles),”SIAM Rev. 11:399–402 (1969).Google Scholar
  21. 21.
    R. E. Miles, “On the homogeneous planar Poisson point-process,”Math. Biosciences 6:85–127 (1970).Google Scholar
  22. 22.
    J. Molnar, “Packing of congruent spheres in a strip,”Acta Math. Acad. Sciences Hungaricae Jomus 31 (1–2):173–183 (1978).Google Scholar
  23. 23.
    J. M. Nelson, “A triangulation algorithm for arbitrary planar domains,”Appl. Math. Modelling 2:151–159 (September 1978).Google Scholar
  24. 24.
    E. C. Pielou,Mathematical Ecology (Wiley, New York, 1977).Google Scholar
  25. 25.
    M. J. D. Powell and M. A. Sabin, “Piecewise quadratic approximations on triangles,”ACM Trans. Math. Software 3 (4):316–325 (December 1977).Google Scholar
  26. 26.
    F. P. Preparata and S. J. Hong, “Convex hulls of finite sets of points in two and three dimensions,”Comm. ACM 20 (2):87–93 (February 1977).Google Scholar
  27. 27.
    D. Rhynsburger, “Analytic delineation of Thiessen polygons,”Geographical Analysis 5 (2):133–144 (April 1973).Google Scholar
  28. 28.
    C. A. Rogers,Packing and Covering (Cambridge University Press, 1964).Google Scholar
  29. 29.
    B. Schachter, A. Rosenfeld, and L. S. Davis, “Random mosaic models for textures,”IEEE Trans. Systems, Man, and Cybernetics 8 (9):694–702 (September 1978).Google Scholar
  30. 30.
    B. J. Schacter, “Decomposition of polygons into convex sets,”IEEE Trans. Computers C-72 (11):1078–1082 (November 1978).Google Scholar
  31. 31.
    M. I.Shamos,Computational Geometry (Springer-Verlag, New York, 1977).Google Scholar
  32. 32.
    M. I. Shamos and D. Hoey, “Closest-point problems,”Proceedings of the 16th Annual Symposium on the Foundations of Computer Science, pp. 151–162 (October 1975).Google Scholar
  33. 33.
    R. Sibson, “Locally equiangular triangulations,”Computer J. 21 (3):243–245 (August 1978).Google Scholar
  34. 34.
    B. Stears, “Probability distribution of a network of triangles (Problem 67-15),”SIAM Rev. 11:399 (1969).Google Scholar
  35. 35.
    P. Switzer, “Reconstructing patterns from sampled data,”Ann. Math. Stat. 38:138–154 (1967).Google Scholar
  36. 36.
    A. H. Thiessen, “Precipitation averages for large areas,”Monthly Weather Rev. 39:1082–1084 (1911).Google Scholar
  37. 37.
    G.Voronoi, “Nouvelles applications des parametres continus à la théorie des formes quadratiques. Deuxième Mémoire: Recherches sur les parallelloedres primitifs,”J. Reine Angew. Math. 134: 198–287 (1908).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • D. T. Lee
    • 1
  • B. J. Schachter
    • 2
  1. 1.Northwestern University Dept. of Electrical Engineering and Computer ScienceEvanston
  2. 2.General Electric Co.Daytona Beach

Personalised recommendations