Journal of Materials Science

, Volume 29, Issue 5, pp 1135–1158

Rare-earth chalcogenides — an emerging class of optical materials

  • P. N. Kumta
  • S. H. Risbud
Review

Abstract

Sulphide compounds belong to the family of chalcogenides and are well known for their optical and electronic properties. They possess good optical properties because of their ability to transmit into the infrared (IR) region. Several sulphide glasses are known to exist which exhibit far infrared transmission and are also useful semiconductors. In recent years, there has been an increasing interest in IR materials to be used on surveillance equipment. This led to the identification of several new crystalline sulphide materials which can transmit very far into the IR region (up to a wavelength of 14 Μm). Crystalline and amorphous rare-earth sulphides emerged as a new class of materials, which possess several unique optical and electronic properties. This paper reviews the status of these rare-earth sulphide amorphous and polycrystalline materials, the techniques used to process these materials and discusses their structure, thermal, mechanical and optical properties. Conventional and emergent novel chemical processing techniques that are used for synthesizing these materials are reviewed in detail. The use of metallorganic precursors and the modification of their chemistry to tailor the composition of the final ceramic are illustrated. The potential of these chemical techniques and their advantages over the conventional solid state techniques used for processing sulphide ceramics is discussed, particularly in light of their successful applications in processing novel electronic and optical oxide ceramics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Rawson, in “Inorganic Glass-Forming Systems” (Academic Press, New York, 1967) p. 249.Google Scholar
  2. 2.
    N. J. Kreidl, in “Glass Science and Technology”, Vol. 1, “Glass-Forming Systems”, edited by D. R. Uhlmann and N. J. Kreidl (Academic Press, New York, 1983) p. 231.Google Scholar
  3. 3.
    J. A. Savage,J. Non-Cryst. Solids 47 (1982) 101.Google Scholar
  4. 4.
    A. Pearson, in “Modern Aspects of the Vitreous State”, edited by J. Mackenzie (Butterworths, London, 1964) p. 29.Google Scholar
  5. 5.
    S. Dembovskii,Inorg. Mater. 5 (1969) 385.Google Scholar
  6. 6.
    P. N. Kumta andS. H. Risbud,Bull. Am. Ceram. Soc. 69 (1990) 1977.Google Scholar
  7. 7.
    A. R. Hilton, C. E. Jones andM. Brau,Phys. Chem. Glasses 7 (4) (1966) 05.Google Scholar
  8. 8.
    W. H. Dumbaugh,Opt. Eng. 24 (1985) 257.Google Scholar
  9. 9.
    Y. Kawamoto andS. Tsuchihashi,J. Am. Ceram. Soc. 52 (1969) 626.Google Scholar
  10. 10.
    Idem, ibid. 54 (1971) 131.Google Scholar
  11. 11.
    P. N. Kumta andS. H. Risbud,Mater. Sci. Eng. B2 (1989) 281.Google Scholar
  12. 12.
    Idem, J. Mater. Res. 8 (1993) 1394.Google Scholar
  13. 13.
    Idem, Prog. Cryst. Growth. and Char. of Mater. 22 (1991) 321.Google Scholar
  14. 14.
    Idem, Mat. Sci. Eng. B 18 (1993) 260.Google Scholar
  15. 15.
    Idem, in “Proceedings of the 4th International Conference on Ultrastructure Processing of Glasses, Ceramics and Composites,” Tucson, AZ, February 1989, edited by D. R. Uhlmann and D. R. Ulrich (Wiley, New York, 1992) p. 555.Google Scholar
  16. 16.
    S. Barnier, M. Guittard, M. P. Pardo, A. M. Loireau-Lozac'h andJean Flahaut,Mater. Res. Bull. 18 (1983) 1217.Google Scholar
  17. 17.
    A. Bornstein, J. Flahaut, M. Guittard, S. Jaulmes, A. M. Loireau-Lozac'h, G. Lucazeau andR. Reisfield, in “The Rare Earths in Modern Science and Technology,” edited by G. J. McCarthy and J. J. Rhine (Plenum Press, New York, 1978) p. 599.Google Scholar
  18. 18.
    J. Flahaut, M. Guittard andA. M. Loireau-Lozac'h,Glass Technol. 24 (3) (1983) 49.Google Scholar
  19. 19.
    M. Guittard, A. M. Loireau-Lozac'h, M. P. Pardo, J. Flahaut andG. Lucazeau,Mater. Res. Bull. 13 (1978) 317.Google Scholar
  20. 20.
    P. Laruelle,Ann. Chim. (Paris) 7 (1982) 119.Google Scholar
  21. 21.
    C. Carcally, M. Guittard andA. M. Loireau-Lozac'h,Mater. Res. Bull. 15 (1980) 545.Google Scholar
  22. 22.
    A. M. Loireau-Lozac'h, S. Barnier, M. Guittard, P. Besançon andJ. Flahaut,Ann. Chim. 9 (1974) 127.Google Scholar
  23. 23.
    L. Cervinka andA. Hruby,J. Non-Cryst. Solids 48 (1982) 231.Google Scholar
  24. 24.
    A. M. Loireau-Lozac'h, M. Guittard andJ. Flahaut,Mater. Res. Bull. 12 (1977) 881.Google Scholar
  25. 25.
    Idem, ibid. 11 (1976) 1489.Google Scholar
  26. 26.
    M. J. Weber, in “Proceedings of the International Conference on Lasers”, edited by R. C. Powell (STS Press, New Orleans, LA, 1982).Google Scholar
  27. 27.
    S. Benazeth, M. H. Tuilier, A. M. Loireau-Lozac'h, H. Dexpert, P. Lagarde, andJ. Flahaut,J. Non-Cryst. Solids 110 (1989) 89.Google Scholar
  28. 28.
    M. Guittard, P. H. Fourcroy, J. Flahaut andA. Chilouet,Ann. Chim. 1 (1976) 47.Google Scholar
  29. 29.
    P. S. Barnier, M. Guittard andJ. Flahaut,Mater. Res. Bull. 14 (1979) 973.Google Scholar
  30. 30.
    P. N. Kumta andS. H. Risbud, in “Proceedings of the SPIE Convention”, San Diego, CA 8–13 July. Edited by A. J. Marker (SPIE, 1990) p. 10.Google Scholar
  31. 31.
    Idem, J. Mater. Res. 6 (1991) 2694.Google Scholar
  32. 32.
    E. S. Sarkisov, R. A. Liden andV. V. Shum,Izv. Akad. Nauk SSSR Neorg Mater. 6 (1970) 20544.Google Scholar
  33. 33.
    P. N. Kumta, Ph D dissertation, University of Arizona, Tucson, AZ (1990).Google Scholar
  34. 34.
    E. R. Plumat,J. Am. Ceram. Soc. 51 (1968) 499.Google Scholar
  35. 35.
    K. Wei, J. Wenzel, E. Snitzer andG. H. Sigal Jr, “in 94th Annual Ceramic Society Meeting”, Abstract 71-G, Minneapolis (1992) p. 238.Google Scholar
  36. 36.
    J. A. Savage, in “Infrared Optical Materials and their Antireflection Coatings” (Adam Hilger, London, 1985) p. 3.Google Scholar
  37. 37.
    J. A. Savage andK. J. Marsh,Proc. SPIE 297 (1981) 35.Google Scholar
  38. 38.
    P. Klocek,MRS Bull. 5 (1986) 41.Google Scholar
  39. 39.
    S. Musikant, “Optical Materials, an Introduction to Selection and Application” (Marcel Dekker, New York, 1985).Google Scholar
  40. 40.
    P. E. D. Morgan andM. S. Koutsoutis,Mater. Res. Bull. 22 (1987) 617.Google Scholar
  41. 41.
    R. W. G. Wyckoff,Crystal Struct. II (1964) 160.Google Scholar
  42. 42.
    Idem, Ibid. II (1964) 75.Google Scholar
  43. 43.
    D. Roy,SPIE Proc. 297 (1981) 24.Google Scholar
  44. 44.
    W. H. Zachariasen,Acta Crystallogr. 2 (1949) 57.Google Scholar
  45. 45.
    J. Flahaut, in “Handbook on the Physics and Chemistry of Rare Earths”, Edited by K. A. Gschneidner Jr. and Le RoyEyning, Vol. 4 (North-Holland, Amsterdam, 1979) p. 1.Google Scholar
  46. 46.
    J. Flahaut, M. Guittard, M. Patrie, M. P. Pardo, S. M. Gulabi andL. Domange,Acta Crystallogr. 19 (1965) 14.Google Scholar
  47. 47.
    C. Lowe-Ma, in “Advances in Materials Characterization”, edited by D. R. Rossington, R. A. Condrate and R. L. Snyder (Plenum, New York, 1983) p. 267.Google Scholar
  48. 48.
    A. W. Sleight andC. T. Prewitt,Inorg. Chem. 7 (1968) 2282.Google Scholar
  49. 49.
    K. J. Saunders, T. Y. Wong, T. M. Hartnett, R. W. Tustison andR. L. Gentilman,SPIE Proc. 683 (1986) 72.Google Scholar
  50. 50.
    D. C. Harris, M. E. Hills, R. L. Gentilman, K. J. Saunders andT. Y. Wong Adv. Ceram. Mater. 2 (1987) 74.Google Scholar
  51. 51.
    W. M. Yim, A. K. Fan andE. J. Stofko,J. Electrochem. Soc. Solid State Sci. Technol. 120 (1973) 441.Google Scholar
  52. 52.
    K. J. Saunders, T. Y. Wong, R. L. Gentilman,Proc. SPIE 505 (1984) 31.Google Scholar
  53. 53.
    D. L. Chess, C. A. Chess andW. B. White,J. Am. Ceram. Soc. 66 (1983) C205.Google Scholar
  54. 54.
    O. Schevciw andW. B. White,Mater. Res. Bull. 18 (1983) 1059.Google Scholar
  55. 55.
    D. L. Chess, C. A. Chess andW. B. White,ibid. 19 (1984) 1551.Google Scholar
  56. 56.
    J. A. Savage, K. L. Lewis, B. E. Kinsman, A. R. Wilson andR. Riddle,Proc. SPIE 683 (1986) 79.Google Scholar
  57. 57.
    K. L. Lewis, J. A. Savage, K. J. Marsh andA. P. C. Jones,ibid. 400 (1983) 21.Google Scholar
  58. 58.
    J. A. Beswick, D. J. Peddar, J. C. Lewis andF. W. Ainger,ibid. 400 (1983) 12.Google Scholar
  59. 59.
    R. L. Gentilman, M. B. Dekosky, T. Y. Wong andR. W. Tustison,Proc. SPIE 929 (1988) 57.Google Scholar
  60. 60.
    M. E. Hills, “Preparation, Properties and Development of Calcium Lanthanum Sulfide as an 8–12 Μm Transmitting Ceramic”, Naval Weapons Center, China Lake, CA (1989).Google Scholar
  61. 61.
    J. Covino, D. C. Harris, M. E. Hills, R. T. Loda andR. W. Schwartz,Proc. SPIE 505 (1984) 42.Google Scholar
  62. 62.
    W. B. White, D. Chess, C. A. Chess, J. V. Biggers,ibid. 297 (1981) 38.Google Scholar
  63. 63.
    P. C. Provenzano, S. I. Boldish andW. B. White,Mater. Res. Bull. 12 (1977) 939.Google Scholar
  64. 64.
    D. L. Chess, C. A. Chess, J. V. Biggers andW. B. White,J. Am. Ceram. Soc. 66 (1983) 18.Google Scholar
  65. 65.
    P. J. Walker andR. C. C. Ward,Mater. Res. Bull. 19 (1984) 717.Google Scholar
  66. 66.
    P. BesanÇon, D. Carre, P. Laruelle andJ. Flahaut, in “Proceedings of the 9th Rare-Earth Conference”, Vol. 1, edited by P. E. Field (Blacksburg, VA, 1971) p. 113.Google Scholar
  67. 67.
    P. Besançon,J. Solid State Chem. 7 (1973) 232.Google Scholar
  68. 68.
    K. A. Gschneidner Jr, J. F. Nakahara, B. J. Beaudry andT. Takeshita,Mater. Res. Soc. Symp. 97 (1987) 359.Google Scholar
  69. 69.
    T. Amano, B. J. Beaudry andK. A. Gschneidner J. Appl. Phys. 59 (1986) 3437.Google Scholar
  70. 70.
    T. Takeshita, B. J. Beaudry andK. A. Gschneidner Jr, in “The Rare Earths in Modern Science and Technology”, 3, edited by G. J. McCarthy, H. B. Silber and J. J. Rhyne, (Plenum, 1982) p. 255.Google Scholar
  71. 71.
    T. Takeshita, B. J. Beaudry andK. A. Gschneidner Jr, in “Fourth International Conference on Thermoelectric Energy Conversion”, edited by K. R. Rao (Institute of Electrical and Electronic Engineers, New York, 1982) p. 48.Google Scholar
  72. 72.
    B. J. Beaudry, M. J. Tschetter, J. F. Nakahara, T. Takeshita andK. A. Gschneidner Jr, in “Sixth International Conference on Thermoelectric Energy Conversion”, The University of Texas at Arlington, edited by K. R. Rao 12–14 March (University of Texas, Arlington, 1986) p. 20.Google Scholar
  73. 73.
    T. Takeshita, K. A. Gschneidner Jr andB. J. Beaudry,J. Appl. Phys. 57 (1985) 4633.Google Scholar
  74. 74.
    J. R. Henderson, M. Muramoto, E. Loh andJ. B. Gruber,J. Chem. Phys. 47 (1967) 3347.Google Scholar
  75. 75.
    C. Wood, A. Lockwood, J. Parker, A. Zoltan andD. Zoltan,J. Appl. Phys. 58 (1985) 1542.Google Scholar
  76. 76.
    J. D. Whittenberger andR. H. Smoak,J. Am. Ceram. Soc. 70 (1987) C-90.Google Scholar
  77. 77.
    S. M. Luguev, N. V. Lugueva, V. V. Sokolov andYu. N. Malovitskii,Inorg. Mater. 21 (1985) 762.Google Scholar
  78. 78.
    F. K. Volynets, G. N. Dronova, N. V. Vekshina andI. A. Mironov,ibid. 13 (1977) 432.Google Scholar
  79. 79.
    E. M. Loginova, A. A. Grizik, N. M. Ponomarev andA. A. Eliseev,ibid. 11 (1975) 644.Google Scholar
  80. 80.
    J. Flahaut, Louis Domange andMadeline Patrie,Bull. Soc. Chim. (1962) 2048.Google Scholar
  81. 81.
    J. F. Nakahara, M. J. Tschetter andB. J. Beaudry, T. Takeshita andK. A. Gschneidner Jr. in “Sixth International Conference on Thermoelectric Energy Conversion”, The University of Texas at Arlington, edited by K. R. Rao, 12–14 March (University of Texas, Arlington, 1986) p. 35.Google Scholar
  82. 82.
    K. Ikeda, T. Furuyama, A. Maeda, K. A. Gschneidner Jr, andB. J. Beaudry,J. Phys. Soc. Jpn 55 (1986) 2473.Google Scholar
  83. 83.
    K. Ikeda, K. A. Gschneidner Jr,B. J. Beaudry andU. Atzmony,Phys. Rev. B 25 (1982) 4604.Google Scholar
  84. 84.
    K. Ikeda, K. A. Gschneidner Jr,B. J. Beaudry andT. Ito,ibid. 25 (1982) 4618.Google Scholar
  85. 85.
    T. Takeshita, K. A. Gschneidner Jr andB. J. Beaudry, in “Proceedings of the 5th International Conference on Thermoelectric Energy Conversion”, The University of Texas, Arlington. Edited by K. R. Rao, 14–16 March, 1984. (The University of Texas, Arlington, 1984) p. 144.Google Scholar
  86. 86.
    K. A. Gschneidner Jr, B. J. Beaudry, T. Takeshita andS. S. Eucker, S. M. A. Taher, J. C. Ho andJ. B. Gruber,Phys. Rev. B 24 (1981) 7187.Google Scholar
  87. 87.
    J. C. Ho, S. M. A. Taher, G. B. King, J. B. Gruber, B. J. Beaudry andK. A. Gschneidner Jr,J. de Phys. 39 (1978) C6–840.Google Scholar
  88. 88.
    J. F. Nakahara, B. J. Beaudry, K. A. Gschneidner Jr andT. Takeshita,Mater. Res. Soc. Proc. 97 (1987) 379.Google Scholar
  89. 89.
    J. F. Nakahara, T. Takeshita, M. J. Tschetter, B. J. Beaudry andK. A. Gschneidner Jr,J. Appl. Phys. 63 (1988) 2331.Google Scholar
  90. 90.
    Idem andK. A. Gschneidner Jr, in “The First European Conference on Thermoelectrics”, Edited by D. M. Rowe (Peter Peregrinus, London, 1988) Ch. 14, p. 161.Google Scholar
  91. 91.
    A. A. Kamarzin, K. E. Mironov, V. V. Sokolov, Tu. N. Maovitsky andI. G. Vasil'yeva,J.Crystal Growth 52 (1981) 619.Google Scholar
  92. 92.
    A. Addamiano andP. A. Dell,J. Phys. Chem. 61 (1957) 1020.Google Scholar
  93. 93.
    A. Addamiano andM. Aven,J. Appl. Phys. 31 (1960) 36.Google Scholar
  94. 94.
    E. D. Eastman, L. Brewer, Le Roy A. Bromley, P. W. Gilles and Norman L. Lofgren,J. Am. Ceram. Soc. 72 (1950) 4019.Google Scholar
  95. 95.
    W. Geffcken andE. Berger, Ger. Pat. 736411, May 1939.Google Scholar
  96. 96.
    R. Roy,J. Am. Ceram. Soc. 52 (1969) 344.Google Scholar
  97. 97.
    H. Dislich,Angew Chem. 83 (1971) 428.Google Scholar
  98. 98.
    H. Schmidt,J. Non-Cryst. Solids 100 (1988) 51.Google Scholar
  99. 99.
    C. J. Brinker,J. Am. Ceram. Soc. 65 (1982) C-4.Google Scholar
  100. 100.
    C. G. Pantano, P. M. Glaser andD. J. Armbright, in “Ultrastructure Processing of Ceramics, Glasses and Composites”, edited by L. Hench and D. R. Ulrich (Wiley, New York, 1984) p. 161.Google Scholar
  101. 101.
    M. Guglielmi andG. Carturan,J. Non-Cryst. Solids 100 (1988) 16.Google Scholar
  102. 102.
    S. Sakka andK. Kamiya,ibid. 42 (1980) 403.Google Scholar
  103. 103.
    E. M. Rabinovich,J. Mater. Sci. 20 (1985) 4259.Google Scholar
  104. 104.
    E. M. Rabinovich, D. W. Johnson Jr,J. B. Machesney andE. M. Vogel,J. Am. Ceram. Soc. 66 (1983) 683.Google Scholar
  105. 105.
    R. K. Iler, in “Science of Ceramic Chemical Processing”, edited by L. L. Hench and D. R. Ulrich (John Wiley, New York, 1986) p. 3.Google Scholar
  106. 106.
    C. J. Brinker andG. W. Scherer, in “Ultrastructure Processing of Ceramics, Glasses and Composites”, edited by L. L. Hench and D. R. Ulrich (Wiley, New York, 1984) p. 43.Google Scholar
  107. 107.
    G. W. Scherer,J. Non-Cryst. Solids 100 (1988) 77.Google Scholar
  108. 108.
    P. F. James,ibid. 100 (1988) 93.Google Scholar
  109. 109.
    C. Sanchez, J. Livage, M. Henry andF. Babonneau,ibid. 100 (1988) 65.Google Scholar
  110. 110.
    L. L. Hench, in “Science of Ceramic Chemical Processing”, edited by L. L. Hench and D. R. Ulrich (John Wiley, New York, 1982) p. 52.Google Scholar
  111. 111.
    C. Sanchez, F. Babonneau, S. Doeuff andA. Leaustic, in “Ultrastructure Processing of Ceramics, Glasses and Composites”, edited by L. L. Hench and D. R. Ulrich (Wiley, New York, 1988) p. 77.Google Scholar
  112. 112.
    Y. Ozaki,Ferroelectrics 49 (1983) 285.Google Scholar
  113. 113.
    S. S. Flaschen,J. Am. Chem. Soc. 77 (1955) 6194.Google Scholar
  114. 114.
    P. P. Phulé, Ph D dissertation, University of Arizona (1989).Google Scholar
  115. 115.
    P. J. Melling,Ceram. Bull. 63 (1984) 1427.Google Scholar
  116. 116.
    E. Matijevic andD. M. Wilhelmy,J. Coll. Interface Sci. 86 (1982) 476.Google Scholar
  117. 117.
    J. D. Mackenzie,J. Non-Cryst. Solids 100 (1988) 162.Google Scholar
  118. 118.
    S. Sakka, in “Treatise on Materials Science and Technology”, Vol. 22, edited by M. Tomozawa and R. H. Doremus (Academic Press, New York, 1982) p. 129.Google Scholar
  119. 119.
    G. W. Scherer,Yogyo Kyokai Shi 95 (1987) 21.Google Scholar
  120. 120.
    C. J. Brinker andG. W. Scherer, in “Ultrastructure Processing of Ceramics, Glasses and Composites”, edited by L. Hench and D. R. Ulrich (Wiley, New York, 1984) p. 43.Google Scholar
  121. 121.
    C. J. Brinker andG. W. Scherer,J. Non-Cryst. Solids 70 (1985) 301.Google Scholar
  122. 122.
    C. J. Brinker, E. P. Roth, G. W. Scherer andD. R. Tallant,ibid. 71 (1985) 171.Google Scholar
  123. 123.
    Idem, ibid. 72 (1985) 345.Google Scholar
  124. 124.
    C. J. Brinker, G. W. Scherer andE. P. Roth,ibid. 72 (1985) 369.Google Scholar
  125. 125.
    C. J. Brinker, W. D. Drotning andG. W. Scherer, in “Better Ceramics Through Chemistry”, Vol. 32, Proceedings of the Materials Research Society Symposium, Albuquerque, New Mexico. Edited by C. J. Brinker, D. E. Clark and D. R. Ulrich (North Holland, New York, 1984) p. 25.Google Scholar
  126. 126.
    J. Zarzycki, in “Glass Science and Technology”, Vol.2, edited by D. R. Uhlmann and N. J. Kriedl (Academic Press, New York, 1984) Ch. 7.Google Scholar
  127. 127.
    D. R. Ulrich,J. Non-Cryst. Solids 100 (1988) 174.Google Scholar
  128. 128.
    G. L. Messing, S. Hirano andH. Hausner (eds), “Ceramic Powder Science III”, Ceramic Transactions, Vol. 12. Proceedings of the 3rd International Conference on Powder Processing Science, San Diego, 4–6 February 1990, and relevant papers in this volume (The American Ceramic Society, Ohio, 1990).Google Scholar
  129. 129.
    K. Osseo-Asare andF. J. Arriagada,ibid., S. Hirano and H. Hausner (eds), “Ceramic Powder Science III”, Ceramic Transactions, Vol. 12. Proceedings of the 3rd International Conference on Powder Processing Science, San Diego, 4–6 February 1990, and relevant papers in this volume (The American Ceramic Society, Ohio, 1990), p. 3 and references 4–9 under Table I, p. 8.Google Scholar
  130. 130.
    H. W. Laverenz, “An Introduction to Luminescence of Solids” (Wiley, New York, 1950) p. 473.Google Scholar
  131. 131.
    C. E. Johnson, D. K. Hickey andD. C. Harris,Proc. SPIE 683 (1986) 112.Google Scholar
  132. 132.
    T. A. Guiton, C. L. Czekaj, M. S. Rau, G. L. Geoffroy andC. G. Pantano, in “Better Ceramics Through Chemistry III”, Vol. 121, Proceedings of the Materials Research Society, edited by C. J. Brinker, D. E. Clark and D. R. Ulrich (Material Research Society, 1988) 503.Google Scholar
  133. 133.
    T. A. Guiton, C. L. Czekaj andC. G. Pantano,J. Non-Cryst. Solids 121 (1990) 7.Google Scholar
  134. 134.
    C. E. Johnson, D. C. Harris andC. B. Willingham,Chem. Mater. 2 (1990) 141.Google Scholar
  135. 135.
    M. Akinc andA. Celikkaya, in “Ceramic Powder Science III”, edited by G. L. Messing, S. Hirano and H. Hausner, Ceramic Transactions, Vol. 12, Proceedings of the 3rd International Conference on Powder Processing Science, held in San Diego, 4–6 February 1990 (The American Ceramic Society, Ohio, 1990) p. 137.Google Scholar
  136. 136.
    A. Bensalem andD. M. Schleich,Mater. Res. Bull. 23 (1988) 857.Google Scholar
  137. 137.
    P. N. Kumta, P. P. Phulé andS. H. Risbud,Mater Lett. 5 (1987) 401.Google Scholar
  138. 138.
    C. M. Vaughan andW. B. White,Mater Res. Soc. Symp. Proc. 97 (1987) 397.Google Scholar
  139. 139.
    L. H. Wang, M. H. Hon, W. L. Huang andW. Y. Lin,Mater Sci. Eng. B7 (1990) 237.Google Scholar
  140. 140.
    Idem, Mater Res. Bull. 26 (1991) 649.Google Scholar
  141. 141.
    Idem, J. Mater. Sci. 26 (1991) 5013.Google Scholar
  142. 142.
    Y. Han andM. Akinc,J. Am. Ceram. Soc. 74 (1991) 2815.Google Scholar
  143. 143.
    L. H. Wang,J. Mater. Sci. Lett. 12 (1993) 212.Google Scholar
  144. 144.
    S. H. Han, K. A. Gschneidner Jr andB. J. Beaudry,Scripta Metall. Mater. 25 (1991) 295.Google Scholar
  145. 145.
    Idem, J. Alloys & Compounds 181 (1992) 463.Google Scholar
  146. 146.
    D. S. Knight andW. B. White,Spectrochim. Acta 46A (1990) 381.Google Scholar
  147. 147.
    P. L. Provenzano andW. B. White,Chem. Phys. Lett. 185 (1991) 117.Google Scholar
  148. 148.
    Idem, J. Am. Ceram. Soc. 73 (1990) 1766.Google Scholar
  149. 149.
    W. B. White,Proc. SPIE 1326 (1990) 80.Google Scholar
  150. 150.
    R. Berman, in “The Properties of Diamond”, edited by J. E. Field (Academic Press, London, 1979) Ch. 1.Google Scholar
  151. 151.
    A. T. Collins,Proc. Mater. Res. Soc. Symp 162 (1990) 3.Google Scholar
  152. 152.
    M. P. Nadler, C. K. Lowe-ma andT. A. Vanderah,Mater. Res. Bull. submitted.Google Scholar
  153. 153.
    C. K. Lowe-ma, D. O. Kipp andT. A. Vanderah, in “Long Wavelength Semiconductor Devices, Materials and Processes”, edited by A. Katz, R. M. Biefleld, R. L. Gunshar, R. J. Malik.Mater. Res. Soc. Symp. Proc. 216 (The Materials Research Society, 1991) p. 397.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • P. N. Kumta
    • 1
  • S. H. Risbud
    • 2
  1. 1.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Division of Materials Science and EngineeringUniversity of CaliforniaDavisUSA

Personalised recommendations