Journal of World Prehistory

, Volume 4, Issue 2, pp 157–222 | Cite as

Measured domestication rates in wild wheats and barley under primitive cultivation, and their archaeological implications

  • Gordon C. Hillman
  • M. Stuart Davies
Article

Abstract

Man's (or, more probably, Woman's) first cereal crops were sown from seed gathered from wild stands, and it was in the course of cultivation that domestication occurred. Experiments in the measurement of domestication rates indicate that in wild-type crops of einkorn, emmer, and barley under primitive systems of husbandry: (a) domestication will occur only if they are harvested when partially or nearly ripe, using specific harvesting methods; (b) exposure to shifting cultivation may sometimes have been required; and (c) under these conditions, the crops could become completely domesticated within 200 years, and perhaps only 20–30 years, without any conscious selection. This paper (a) considers possible delays in the start of domestication due to early crops of wild-type cereals lacking domestic-types mutants; (b) examines the husbandry practices necessary for these mutants to enjoy any selective advantage; (c) considers the state of ripeness at harvest necessary for the crops to respond to these selective pressures; (d) outlines field measurements of the selective intensities arising from analogous husbandry practices applied experimentally to living wild-type crops; (e) summarizes a mathematical model which incorporates the measured selective intensities and other key variables and which describes the rate of increase in domestic-type mutants in early populations of wild-type cereals under specific combinations of primitive husbandry practices; (f) considers why very early cultivators should have used those husbandry methods which, we suggest, led unconsciously to the domestication of wild wheats and barley; and (g) considers whether these events are likely to leave archaeologically recognizable traces.

Key Words

domestication rate agricultural origins einkorn wheat emmer wheat selection pressures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, H. (1974). The Bagundji of the Darling Basin: Cereal gatherers in an uncertain environment.World Archaeology 5: 309–322.Google Scholar
  2. Anderson, H. H., and Whitlow, H. J. (1983). Wear traces and patination on Danish flint artefacts.Nuclear Instruments and Methods in Physics 218: 468–474.Google Scholar
  3. Anderson, P. C. (1980) A testimony of prehistoric tasks: Diagnostic residues on stone tool working edges.World Archaeology 12: 181–194.Google Scholar
  4. Anderson-Gerfaud, P. C. (1983) A consideration of the uses of certain backed and “lustered” stone tools from Late Mesolithic and Natufian levels of Abu Hureyra and Mureybet (Syria). In Cauvin, M. C. (ed.), Traces d'Utilization sur les outiles néolithiques des Proche-Orient,Travaux de la Maison de l'Orient No. 5, Lyon, pp. 77–105.Google Scholar
  5. Anderson-Gerfaud, P. C. (1986). A few comments concerning residue analysis of stone plant-processing tools. In Owen, L., and Unrath, G. (eds.), Technical Aspects of Microwear Studies on Stone Tools.Early Man News 9/10/11: 69–87.Google Scholar
  6. Anderson-Gerfaud, P. C. (1988). Using prehistoric stone tools to harvest cultivated wild cereals: preliminary observations of traces and impact. In Beyries, S. (ed.),Industries Lithiques: Tracéologie et Technologie, British Archaeological Reports, Oxford, pp. 175–195.Google Scholar
  7. Anderson-Gerfaud, P.C. (1990). Experimental cultivation and harvest of wild cereals: Criteria for interpreting Epi-palaeolithic and Neolithic artifacts associated with plant exploitation. In Anderson-Gerfaud, P. C. (ed.),Préhistoire de l'agriculture: Nouvelles approches expérimentales et ethnographiques, Monographies du Centre de Recherches Archéologiques, Valbonne (in press).Google Scholar
  8. Anderson-Gerfaud, P. C., de Aprahamiyan, A. P., and Willcox, G. H. (1990). Cultures de céréales sauvages et primitives au Proche-Orient Néolithique: Ŕesultats de préliminaires d'expériens à Jalès (Ardèche), France.Cahiers de l'Euphrate 5.Google Scholar
  9. Ataman, K. (1989).The Chipped Stone Assemblage from Can Hasan III: A Study in Typology, Technology and Function, Ph.D. dissertation, Institute of Archaeology, University College London, U.K.Google Scholar
  10. Ataman, K. (1990). Threshing sledge flints and archaeology. In Anderson-Gerfaud, P. C. (ed.),Préhistoire de l'agriculture: nouvelles approches expérimentales et ethnographiques, Monographies du Centre de Recherches Archéologiques, Valbonne (in press).Google Scholar
  11. Barth, H. (1857).Travels and Discoveries in North and Central Africa, Being the Journal of an Expedition Under the Auspices of Her Brittanic Majesty's Government in the Years 1849–1855, Longmans and Roberts, London.Google Scholar
  12. Bar-Yosef, O., and Kislev, M. E. (1989). Early Farming communities in the Jordan Valley, In Harris, D. R., and Hillman, G. C. (eds.),Foraging and Farming: The Evolution of Plant Exploitation, Unwin and Hyman, London, pp. 632–642.Google Scholar
  13. Binford, L. R. (1968). Post-pleistocene adaptations. In Binford, S. R. and Binford, L. R. (eds.),New Perspectives in Archaeology, Aldine, Chicago, pp. 313–341.Google Scholar
  14. Bohrer, V. I. (1972). On the relation of harvest methods to early agriculture in the Near East.Economic Botany 26: 145–155.Google Scholar
  15. BSTID (Board of Science and Technology for International Development, Commission on Industrial Relations, and National Research Council)et al. (1981)Postharvest Food Losses in Developing Countries, National Academy of Sciences, Washington, DC.Google Scholar
  16. Butler, A. (1989). Cryptic anatomical characters as evidence of early cultivation in the grain legumes (pulses). In Harris, D. R., and Hillman, G. C. (eds.),Foraging and Farming: The Evolution of Plant Exploitation, Unwin and Hyman, London, pp. 390–407.Google Scholar
  17. Butler, A. (1990). Pulse agronomy: Traditional systems and implications for early cultivation. In Anderson-Gerfaud, P. C. (ed.),Préhistoire de l'agriculture: Nouvelles approches expérimentales et ethnographiques, Monographies due Centre de Recherches Archéologiques, Valbonne (in press).Google Scholar
  18. Byrne, R. (1987). Climatic change and the origins of agriculture. In Manzanilla, L. (ed.),Studies in the Neolithic and Urban Revolutions, British Archaeological Reports (International Series) 349, Oxford, pp. 21–34.Google Scholar
  19. Chikwendu, V. E., and Okezie, C. E. A. (1989). Factors responsible for the ennoblement of African yams: Inferences from experiments in yam domestication. In Harris, D. R., and Hillman, G. C. (eds.),Foraging and Farming: The Evolution of Plant Exploitation, Unwin and Hyman, London, pp. 344–357.Google Scholar
  20. Clark, C., and Haswell, M. (1967).The Economics of Subsistence Agriculture, Macmillan, London.Google Scholar
  21. Cohen, M. N. (1977).The Food Crisis in Prehistory, Yale University Press, New Haven.Google Scholar
  22. College, S. M. (1988). Scanning-electron microscope studies of the pericarp layers of some wild wheats and ryes. Methods and problems. In Olsen, S. L. (ed.),Scanning-Electron Microscopy in Archaeology, British Archaeological Reports, Oxford, pp. 225–236.Google Scholar
  23. Darlington, C. D. (1963/1973).Chromosome Botany and the Origin of Cultivated Plants, Allen and Unwin, London.Google Scholar
  24. Darlington, C. D. (1969).The Evolution of Man and Society, Allen and Unwin, London.Google Scholar
  25. Darwin, C. (1859).On the Origin of Species by Means of Natural Selection, John Murray, London.Google Scholar
  26. Darwin, C. (1868/1975).The Variation of Animals and Plants Under Domestication, Vol. I, 1st and 2nd eds., John Murray, London.Google Scholar
  27. De Candolle, A. (1886).Origin of Cultivated Plants (English translation of 2nd ed., Hafner, New York and London, 1967).Google Scholar
  28. De Wet, J. M. J. (1977) Increasing cereals yields: evolution under domestication. In Siegler, D. S. (ed.),Crop Resources, Academic Press, New York, pp. 111–118.Google Scholar
  29. De Wet, J. M. J., and Harlan, J. R. (1975). Weeds and domesticates: Evolution in the manmade habitat.Economic Botany 29: 99–107.Google Scholar
  30. Engelbrecht, T. H. (1917). Über die Entstehung einiger feldmassig angebauter Kulturpflanzen.Geographischer Zeitschrift 22: 328–343.Google Scholar
  31. Evans, L. T. (1976). Physiological adaptation to performance as crop plants.Philosophical Transactions of the Royal Society London B 275: 71–83.Google Scholar
  32. Flannery, K. V. (1969). Origins and ecological effects of early domestiction in Iran and the Near East. In Ucko, P. J., and Dimbleby, G. W. (eds.),The Domestication of Plants and Animals, Duckworth, London, pp. 73–100.Google Scholar
  33. Frank, R. (1964). Dispersal units and rachis breaking in the generaAegilops, Triticum, andHordeum.Teva Wa'arez 7: 2–5 (In Hebrew, cited by Kislev, 1989).Google Scholar
  34. Fritz, G. J. (1986). Starchy grain crops in the Eastern U.S.: Evidence from the desiccated Ozark plant remains. Paper presented ot the 51st annual meeting of the Society for American Archaeology, New Orleans.Google Scholar
  35. Hammer, K. (1984). Das Domestikationssyndrom.Die Kulturpflanze 32: 11–34.Google Scholar
  36. Hammer, K., Skolimowska, E., and Knüpffer, H. (1987). Vorarbeiten zur mongraphischen Darstellung von Wildpflanzensortimenten:Secale L.Die Kulturpflanze 35: 135–177.Google Scholar
  37. Harlan, J. R. (1965). The possible role of weed races in the evolution of cultivated plants.Euphytica 14: 173–176.Google Scholar
  38. Harlan, J. R. (1967). A wild wheat harvest in Turkey,Archaeology 20: 197–201.Google Scholar
  39. Harlan, J. R. (1975).Crops and Man, American Society of Agronomy, Madison, Wis.Google Scholar
  40. Harlan, J. R. (1982) Human interference with grass systematics. In Estes, J. R., Tyrl, R. J., and Brunken, J. N. (eds.),Grasses and Grasslands: Systematics and Ecology, University Press, Okla., pp. 37–50.Google Scholar
  41. Harlan, J. R. (1989). Wild grass-seed harvesting in the Sahara and Sub-Sahara of Africa. In Harris, D. R., and Hillman, G. C. (eds.),Foraging and Farming: The Evolution of Plant Exploitation, Unwin and Hyman, London, pp. 79–78.Google Scholar
  42. Harlan, J. R. (1990). Wild grass-seed harvesting and implications for domestication. In Anderson-Gerfaud, P. C. (ed.),Préhistoire de l'agriculture: Nouvelles approches expérimentales et ethnographiques, Monographies du Centre de Recherches Archéologiques, Valbonne (in press).Google Scholar
  43. Harlan, J. R., de Wet, J. M. J., and Price, A. G. (1973). Comparative evolution in cereals.Evolution 27: 311–325.Google Scholar
  44. Harris, D. R. (1976). Discussion following paper by Pickersgill and Heizer (q.v.).Philosophical Transactions of the Royal Society, London B 275: 68–69.Google Scholar
  45. Harris, D. R. (1977). Alternative pathways towards agriculture. In Reed, C. A. (ed.),Origins of Agriculture, Mouton, The Hague, pp. 197–243.Google Scholar
  46. Harris, D. R. (1984). Ethnohistorical evidence for the exploitation of wild grasses and forbs: its scope and archaeological implications. In van Zeist, W. and Casparie, W. C. (eds.),Plants and Ancient Man: Studies in Palaeoethnobotany, Balkema, Rotterdam, pp. 63–69.Google Scholar
  47. Harris, D. R. (1989). An evolutionary continuum of people-plant interaction. In Harris, D. R., and Hillman, G. C. (eds.),Foraging and Farming: The Evolution of Plant Exploitation, Unwin and Hyman, London, pp. 11–26.Google Scholar
  48. Hassan, F. A. (1981).Demographic Archaeology, Academic Press, New York.Google Scholar
  49. Hawkes, J. G. (1969). The ecological background to plant domestication. In Ucko, P. J., and Dimbleby, G. W. (eds.),Domestication and Exploitation of Plants and Animals, Duckworth, London, pp. 17–29.Google Scholar
  50. Hawkes, J. G. (1983).The Diversity of Crop Plants, Harvard University Press, Cambridge, Mass.Google Scholar
  51. Hawkes, J. G. (1989). The domestication of roots and tubers in the American tropics. In Harris, D. R., and Hillman, G. C. (eds.),Foraging and Farming: The Evolution of Plant Exploitation, Unwin and Hyman, London, pp. 481–503.Google Scholar
  52. Heiser, C. B. (1965). Sunflowers, weeds, and cultivated plants. In Baker, H. G., and Stebbins, G. L. (eds.),The Genetics of Colonizing Species, Academic Press, New York, pp. 391–401.Google Scholar
  53. Heiser, C. B. (1985). Some botanical considerations of the early domesticated plants north of Mexico. In Ford, R. I. (ed.),Prehistoric Food Production in North America, Museum of Anthropology, University of Michigan, Ann Arbor, pp. 57–72.Google Scholar
  54. Heiser, C. B. (1988). Aspects of unconscious selection and the evolution of domesticated plants.Euphytica 37: 77–81.Google Scholar
  55. Heiser, C. B. (1989). Domestication of Cucurbitaceae:Cucurbita andLagenaria. In Harris, D. R., and Hillman, G. C. (eds.),Foraging and Farming: The Evolution of Plant Exploitation, Unwin and Hyman, London, pp. 471–480.Google Scholar
  56. Helbaek, H. (1966a). Pre-Pottery Neolithic farming at Beidha. In Kirkbride, D., Five seasons at the Pre-Pottery Neolithic village at Beidha in Jordan.Palestine Exploration Quarterly 98: 8–72.Google Scholar
  57. Helbaek, H. (1966b). Commentary on the phylogenesis ofTriticum andHordeum.Economic Botany 20: 350–360.Google Scholar
  58. Helbaek, H. (1969). Plant collecting, dry-farming and irrigation agriculature in prehistoric Deh Luran. In Hole, F., Flannery, K. V., and Neely, J. A. (eds.), Prehistory and Human Ecology of the Deh Luran Plain: An Early Village Sequence from Khuzistan.Memoirs of the Museum of Anthropology of the University of Michigan, Ann Arbor, pp. 383–426.Google Scholar
  59. Hillman, G. C. (1973) Agricultural productivity and past population potential at Aşvan.Anatolian Studies 23: 225–240.Google Scholar
  60. Hillman, G. C. (1975). The plant remains from Tell Abu Hureyra. In Moore, A. M. T. (ed.), The excavation of Tell Abu Hureyra in Syria: A preliminary report.Proceedings of the Prehistoric Society 41: 70–73.Google Scholar
  61. Hillman, G. C. (1978). On the origins of domestic rye—Secale cereale L.: The finds from Aceramic Can Hasan III in Turkey.Anatolian Studies 28: 157–174.Google Scholar
  62. Hillman, G. C. (1981). Reconstructing crop husbandry practices from charred remains of crops. In Mercer, R. (ed.),Farming Practice in British Prehistory, Edinburgh University Press, Edinburgh, pp. 123–162.Google Scholar
  63. Hillman, G. C. (1984). Traditional husbandry and processing of archaic cereals in recent times: the operations, products and equipment that might feature in Sumerian texts. I. The glume wheats.Bulletin on Sumerian Agriculture 1: 114–152.Google Scholar
  64. Hillman, G. C. (1985). Traditional husbandry and processing of archaic cereals in recent times: The operations, products and equipment that might feature in Sumerian texts. II. The free-threshing cereals.Bulletin on Sumerian Agriculture 2: 1–31.Google Scholar
  65. Hillman, G. C. (1987). The initial adoption of cereal cultivation in the northern Fertile Crescent: A region-specific model. Paper presented at November 1987 Conference of Association of Environmental Archaeology, Cardiff.Google Scholar
  66. Hillman, G. C. (1990). Crop husbandry on an alluvial fan in the Konya Basin during the Aceramic Neolithic: The charred plant remains from Can Hasan III in central Anatolia (in preparation).Google Scholar
  67. Hillman, G. C., Colledge, S. M., and Harris, D. R. (1989a). Plant food economy during the Epipalaeolithic period at Abu Hureyra, Syria: Dietry Diversity, Seasonality and modes of exploitation. In Harris, D. R., and Hillman, G. C. (eds.),Foraging and Farming: Evolution of Plant Exploitation, Unwin and Hyman, London, pp. 240–268.Google Scholar
  68. Hillman, G. C., and Davies, M. S. (1990). Domestication rate in wild wheats and barleys under primitive cultivation: Preliminary results using field measurements of selection coefficient, and the archaeological implications. In Anderson-Gerfaud, P.C. (ed.),Préhistoire de l'agriculture: Nouvelles approches expérimentales et ethnographiques, Monographies du Centre de Recherches Archéologiques, Valbonne (in press).Google Scholar
  69. Hillman, G. C., and McLaren, F. (1990). Was rye one of the first Old World food crops? Archaeological evidence from Abu Hureyra on the Euphrates.Economic Botany (in press).Google Scholar
  70. Hillman, G. C., Madeyska, E., and Hather, J. G. (1989b). Wild plant foods and diet at Late Paleolithic Wadi Kubbaniya: Evidence from the charred remains. In Wendorf, F., and Schild, R. (assemblers), and Close, A. E. (ed.),The Prehistory of Wadi Kubbaniya. Vol. 2: Stratigraphy, Paleoeconomy and Environment, Southern Methodist University Press, Dallas, pp. 162–242 (+ combined bibliography, Vol. 3, pp. 830–854).Google Scholar
  71. Hillman, G. C., Robins, G. V., Jones, C. E. R., and Gutteridge, C. S. (1990). Testing the limits of the taxonomic resolution of pyrolysis mass spectrometry in ancient wheat grain: Preliminary results (in preparation).Google Scholar
  72. Hopf, M. (1983). Jericho plant remains. In Kenyon, K. M., and Holland, T. A. (eds.),Excavations at Jericho Vol. 55, British School of Archaeology at Jerusalem, London, pp. 576–621.Google Scholar
  73. ICARDA (International Centre for Agriculture Research in Dry Areas) (1980). Post-Harvest Processing of Winter Crops in NW Syria,Discussion Document No. 4, ICARDA, Aleppo, Syria.Google Scholar
  74. Ismail, A. M. A. (1988). The ecological and agronomic role of seed polymorphism inSimmondsia chinensis. Journal of Arid Environments14: 35–42.Google Scholar
  75. Jarman, H. N. (1972). The origins of wheat and barley cultivation. In Higgs, E. S. (ed.),Papers in Economic Prehistory. Cambridge University Press, Cambridge, pp. 15–26.Google Scholar
  76. Johns, T. (1989). A chemical ecological model of root and tuber domestication in the Andes. In Harris, D. R., and Hillman, G. C. (eds.),Foraging and Farming: The Evolution of Plant Exploitation, Unwin and Hyman, London, pp. 504–519.Google Scholar
  77. Keeley, L. H., and Newcomer, M. H. (1977). Microwear analysis of experimental flint tools: A test case.Journal of Archaeological Science 4: 29–62.Google Scholar
  78. Kislev, M. E. (1989). Pre-domesticated cereals in the Pre-Pottery Neolithic A period. In Hershkovitz, I. (ed.),Man and Culture in Change, British Archaeological Reports (International Series), Oxford, 508 (i), pp. 147–151.Google Scholar
  79. Kislev, M. E. (1990). Agriculture in the Near East in the 8th millennium be. In Anderson-Gerfaud, P. C. (ed.),Préhistoire de l'agriculture: Nouvelles approaches expérimentales et ethnographiques, Monographies du Centre de Recherches Archéologiques, Valbonne (in press).Google Scholar
  80. Kislev, M. E., Bar-Yosef, O., and Gopher, A. (1986). Early neolithic domestication of wild barley from the Netiv Hagdud region of the Jordan Valley.Israel Journal of Botany 35: 197–201.Google Scholar
  81. Korobkova, G. F. (1978). The most ancient harvesting implements and their productivity: An experimental-traceological study.Sovyetskaya Archaeologia 4: 37–53 (in Russian).Google Scholar
  82. Korobkova, G. F. (1981). Ancient reaping tools and their productivity in the light of experimental microwear analysis. In Kohl, P. L. (ed.),The Bronze Age Civilization of Central Asia, M. E. Sharpe, New York, pp. 325–329.Google Scholar
  83. Kuckuck, H. (1964). Experimentelle Untersuchung zur Entstehung der Kulturweizen. I. Die Variation der iranischen Spelzweizens and seine genetischen Beziehungen ...Zeitschrift für Pflanzenzuchtung 51: 97–140.Google Scholar
  84. Ladizinsky, G. (1979). Seed dispersal in relation to the domestication of Middle East legumes.Economic Botany 73: 284–289.Google Scholar
  85. Ladizinsky, G. (1985). Founder effects in crop-plant evolutionEconomic Botany 39: 191–199.Google Scholar
  86. Ladizinsky, G. (1987). Pulse domestication before cultivation.Economic Botany 41: 60–65.Google Scholar
  87. Ladizinsky, G. (1989a). Origin and domestication of SW Asian grain legumes. In Harris, D. R., and Hillman, G. C. (eds.),Foraging and Farming: The Evolution of Plant Exploitation, Unwin and Hyman, London, pp. 374–389.Google Scholar
  88. Ladizinsky, G. (1989b). Pulse domestication: fact or fiction?Economic Botany 43: 131–132.Google Scholar
  89. Legge, A. J. (1989). Milking the evidence: A reply to Entwhistle and Grant. In Milles, A., Williams, D., and Gardner, N. (eds.),The Beginnings of Agriculture, British Archaeological Reports, Oxford, pp. 217–242.Google Scholar
  90. McLaren, F., Evans, J., and Hillman, G. C. (1990). The potential of infra-red spectroscopy for identifying charred and desiccated remains of wheats from archaeological sites.Journal of Archaeological Science (in press).Google Scholar
  91. Maurizio, A. (1927).Die Geschichte unserer Pflanzennahrung, Parey, Berlin.Google Scholar
  92. Miksicek, C. H. (1987). Formation processes in the archaeobotanical record.Advances in Archaeological Method and Theory 10: 211–247.Google Scholar
  93. Miller, T. E. (1986). Evolution and systematics. In Lupton, F. G. H. (ed.)Wheat Breeding: Its Scientific Basis, Chapman and Hall, London, pp. 1–30.Google Scholar
  94. Miller, T. E. (1990). A cautionary note on the use of morphological characters for recognizing forms of wheat (genusTriticum). In Anderson-Gerfaud, P. C. (ed.),Préhistoire de l'agriculture: Nouvelles approches expérimentales et ethnographiques, Monographies du Centre de Recherches Archéologiques, Valbonne (in press).Google Scholar
  95. Moore, A. M. T. (1985). The development of Neolithic societies in the Near East. In Wendorf, F., and Close, A. E. (eds.),Advances in World Archaeology, Vol. 4, Academic Press, Orlando, pp. 1–69.Google Scholar
  96. Moore, A. M. T. (1989). The transition from foraging to farming in Southwest Asia: Present problems and future directions. In Harris, D. R., and Hillman, G. C. (eds.),Foraging and Farming: The Evolution of Plant Exploitation, Unwin and Hyman, London, pp. 620–631.Google Scholar
  97. Moore, A. M. T., Hillman, G. C., and Legge, A. J. (1990).Abu Hureyra and the Advent of Agriculture, Yale University Press, New Haven, Conn. (in press).Google Scholar
  98. Moss, E. H. (1983).The Functional Analysis of Flint Implements: Pincevent and Pont d'Ambou: Two Case Studies from the French Final Palaeolithic, British Archaeological Reports, Oxford.Google Scholar
  99. Muramatsu, M. (1986). Thevulgare supergene, Q: Its universality in durum wheat and its phenotypic effects in tetraploid and hexaploid wheats.Canadian Journal of Genetics and Cytology 28: 30–41.Google Scholar
  100. Newcomer, M. H., Grace, R., and Unger-Hamilton, R. (1986). Investigating microwear analysis with blind tests.Journal of Archaeological Science 13: 203–217.Google Scholar
  101. O'Connell, J. F., Latz, P. K., and Barnett, P. (1983). Traditional and modern plant use among the Alyawara of Central Australia.Economic Botany 37: 80–109.Google Scholar
  102. Percival, J. (1921).The Wheat Plant, Duckworth, London (1974 reprint).Google Scholar
  103. Pickersgill, B. (1971). Relationships between some weedy and cultivated forms in some species of chili peppers (genusCapsicum).Evolution 25: 683–691.Google Scholar
  104. Pickersgill, B. (1989). Cytological and genetical evidence for the domestication and diffusion of crops within the Americas. In Harris, D. R., and Hillman, G. C. (ed.),Foraging and Farming: The Evolution of Plant Exploitation, Unwin and Hyman, London, pp. 426–439.Google Scholar
  105. Pickersgill, B., and Heiser, C. B. (1976). Cytogenetics and evolutionary change under domestication.Philosophical Transactions of the Royal Society London B 275: 55–69.Google Scholar
  106. Pickersgill, B., Heiser, C. B., and McNeill, J. (1979). Numerical taxonomic studies on variation and domestication in some species ofCapsicum. In Hawkes, J. G., Lester, R. N., and Skelding, A. D. (eds.),The Biology and Taxonomy of the Solonaceae, Academic Press, London, pp. 679–700.Google Scholar
  107. Reynolds, P. (1981). Deadstock and livestock. In Mercer, R. (ed.),Farming Practice in British Prehistory, Edinburgh University Press, Edinburgh, pp. 97–122.Google Scholar
  108. Reynolds, P. (1990). Crop yields of the prehistoric cereal types emmer and spelt: The worst option. In Anderson-Gerfaud, P. C. (ed.),Préhistoire de l'agriculture: Nouvelles approches expérimentales et ethnographiques. Monographies du Centre de Recherches Archéologiques, Valbonne (in press).Google Scholar
  109. Riley, R. (1965). Cytogenetics and the evolution of wheat. In Hutchinson, J. (ed.),Crop Plant Evolution, Cambridge University Press, Cambridge, pp. 103–122.Google Scholar
  110. Rindos, D. (1984).The Origins of Agriculture: An Evolutionary Perspective, Academic Press, New York.Google Scholar
  111. Rindos, D. (1989). Darwinism and its role in the explanation of domestication. In Harris, D. R., and Hillman, G. C. (eds.),Foraging and Farming: The Evolution of Plant Exploitation, Unwin and Hyman, London, pp. 27–41.Google Scholar
  112. Russell, K. W. (1988).After Eden: The Behavioural Ecology of Early Food Production in the Near East and North Africa, British Archaeological Reports (International Series), Oxford.Google Scholar
  113. Schieman, E. (1932).Entstehung der Kulturpflanzen, Borntraeger, Berlin.Google Scholar
  114. Schieman, E. (1948).Weizen, Roggen, Gerste: Systematik, Geschichte und Verwendung, Gustav Fischer, Jena.Google Scholar
  115. Schwanitz, F. (1937).The Origin of Cultivated Plants, Harvard University Press, Cambridge, Mass (1966 translation of German original).Google Scholar
  116. Schudder, T. (1971). Gathering among African Savannah Cultivators.Zambian Papers No.5, Institute for African Studies of the University of Zambia, Lusaka, and Manchester, U.K.Google Scholar
  117. Sencer, H. Â., and Hawkes, J. G. (1980). On the origin of cultivated rye.Biological Journal of the Linnaean Society 13: 299–313.Google Scholar
  118. Sharma, H. C., and Waines, J. G. (1980). Inheritance of tough rachis in crosses ofTriticum monococcum andT. boeoticum.The Journal of Heredity 71: 214–216.Google Scholar
  119. Sherratt, A. (1980), Water, soil and seasonality in early cereal cultivation.World Archaeology 11: 313–330.Google Scholar
  120. Smith, B. D. (1987). The independent domestication of indigenous seed-bearing plants in eastern North America. In Keegan, W. F. (ed.), Emergent Horticultural Economies of the Eastern Woodlands.Center for Archaeological Investigations, Occasional Paper No. 7, Southern Illinois University, Carbondale, pp. 3–47.Google Scholar
  121. Smith, L. (1936). Cytogenetic studies inTriticum monococcum L. andT. aegilopoides Bal.Montana Agricultural Experimental Station Research Bulletin 248: 1–38.Google Scholar
  122. Smith, L. (1939). Mutants and linkage studies inT. monococcum andT. aegilopoides.Montana Agricultural Experimental Station Research Bulletin 298: 1–26.Google Scholar
  123. Smith, P. E. L. (1970). Ganj Dareh Tepe.Iran 8: 78–80.Google Scholar
  124. Smith, P. E. L., and Young, T. C., Jr. (1983). The force of numbers: Population pressure in the central western Zagros 12,000–4500 B.C. In Young, T. C., Jr., Smith, P. E. L., and Mortensen, P. (eds.), The Hilly Flanks and Beyond: Essays on the Prehistory of SW Asia.Studies in Ancient Oriental Civilization 36, University of Chicago Press, Chicago, pp. 141–161.Google Scholar
  125. Steward, J. H. (1933). The Owens Valley Paiute.University of California Publications in American Archaeology and Ethnology 33: 233–350.Google Scholar
  126. Steward, J. H. (1941). Culture element distributions. XIII. Nevada Shoshoni.Anthropological Records of University of California 4: 209–359.Google Scholar
  127. Stordeur, D., and Anderson-Ferfaud, P. C. (1985). Les omoplates encochées néolithiques de Ganj Dareh (Iran). Etude morphologique et fonctionelle.Cahiers de l'Euphrate 4: 289–313.Google Scholar
  128. Unger-Hamilton, R. (1983). An investigation into the variables affecting the development and the appearance of plant polish on flint blades. In Cauvin, M. -C. (ed.), Traces d'Utilization sur les outils néolithiques de Proche-Orient.Travaux de la Maison de l'Orient No. 5, Lyon, pp. 243–250.Google Scholar
  129. Unger-Hamilton, R. (1985). Microscopic striations in flint sickle blades as an indication of plant cultivation: Preliminary results.World Archaeology 17: 121–126.Google Scholar
  130. Unger-Hamilton, R. (1988).Method in Microwear Analysis: Sickle Blades and Other Tools from Arjoune in Syria, British Archaeological Reports, Oxford.Google Scholar
  131. Unger-Hamilton, R. (1989). Epipalaeolithic Palestine and the beginnings of plant cultivation: The evidence from harvesting experiments and microwear studies.Current Anthropology 30: 88–103.Google Scholar
  132. van Zeist, W. (1972). Palaeobotanical results from the 1970 season at Çayönü, Turkey,Helinium 12: 3–19.Google Scholar
  133. van Zeist, W., and Bakker-Heeres, J. A. H. (1979). Some economic and ecological aspects of the plant husbandry at Tell Aswad.Paléorient 5: 161–169.Google Scholar
  134. van Zeist, W., Smith, P. E. L., Palfenier-Vegter, R. M., Suwijn, M., and Casparie, W. A. (1983/1986). An archaeobotanical study of Ganj Dareh Tepe, Iran.Palaeohistoria (Acta Communicationes Instituti Bio-Archaeologici Universitatis Groningenae) 26: 201–224.Google Scholar
  135. Vavilov, N. I. (1917). On the origin of cultivated rye.Bulletin of Applied Botany and Plant Breeding 10: 561–590 (Russian with an English summary).Google Scholar
  136. Vavilov, N. I. (1926).Studies on the Origin of Cultivated Plants, Institute of Applied Botany and Plant Breeding, Leningrad.Google Scholar
  137. Vavilov, N. I. (1951).The Origin, Variation, Immunity and Breeding of Cultivated Plants, Chronica Botanica, New York. (Translated and compiled by K. Starr Chester.)Google Scholar
  138. Wilke, P. J., Bettinger, R., King, T. F., and O'Connell, J. F. (1972). Harvest selection and domestication in seed plants.Antiquity 46: 203–209.Google Scholar
  139. Wilkes, G. (1989). Maize: domestication, racial evolution and spread. In Harris, D. R., and Hillman, G. C. (eds.),Foraging and Farming: The Evolution of Plant Exploitation, Unwin and Hyman, London, pp. 440–455.Google Scholar
  140. Willcox, G. H. (1990). Archaeobotanical significance of growing Near Eastern progenitors of domestic plants at Jalès. In Anderson-Gerfaud, P. C. (ed.),Préhistoire de l'agriculture: nouvelles approaches expérimentales et ethnographiques, Monographies du Centre de Recherches Archéologiques, Valbonne (in press).Google Scholar
  141. Wilson, H. D., and Heiser, C. B. (1979). The origin and evolutionary relationship ofhuauzontle (Chenopodium nuttalliae Safford), domestic chenopod of Mexico.American Journal of Botany 66: 198–206.Google Scholar
  142. Zigman, M. L. (1941).Ethnobotanical Studies Amongst California and Great Basin Shoshoneans, Ph.D. dissertation, Department of Anthopology, Yale University, New Haven, Conn.Google Scholar
  143. Zohary, D. (1969). The progenitors of wheat and barley in relation to domestication and agricultural dispersal in the Old World. In Ucko, P. J. and Dimbleby, G. W. (eds.),The Domestication and Exploitation of Plants and Animals, Duckworth, London, pp. 47–66.Google Scholar
  144. Zohary, D. (1984). Modes of evolution of plants under domestication. In Grant, W. F. (ed.),Plant Biosystematics, Academic Press, Montreal, pp. 579–586.Google Scholar
  145. Zohary, D. (1989a). Domestication of the Southwest Asian crop assemblage of cereals, pulses and flax: The evidence from the living plants. In Harris, D. R., and Hillman, G. C. (eds.),Foraging and Farming: The Evolution of Plant Exploitation, Unwin and Hyman, London, pp. 359–373.Google Scholar
  146. Zohary, D. (1989b). Pulse domestication and cereal domestication: How different are they?Economic Botany 43: 31–34.Google Scholar
  147. Zohary, D. (1990). Domestication of the Neolithic Near East crop assemblage. In Anderson-Gerfaud, P. C. (ed.),Préhistoire de l'agriculture: Nouvelles approches expérimentales et ethnographiques, Monographies du Centre de Recherches Archéologiques, Valbonne (in press).Google Scholar
  148. Zohary, D., and Hopf, M. (1988).Domestication of Plants in the Old World, Oxford University Press, Oxford.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Gordon C. Hillman
    • 1
  • M. Stuart Davies
    • 2
  1. 1.Department of Human Environment, Institute of ArchaeologyUniversity College LondonLondonUK
  2. 2.School of Pure and Applied BiologyUniversity of Wales College of CardiffCardiffWales
  3. 3.Department of Planty ScienceUniversity of Wales College of CardiffCardiffWales

Personalised recommendations