Minds and Machines

, Volume 5, Issue 3, pp 309–337 | Cite as

Why cognitive science is not formalized folk psychology

  • Martin Pickering
  • Nick Chater
Critical Exchange

Abstract

It is often assumed that cognitive science is built upon folk psychology, and that challenges to folk psychology are therefore challenges to cognitive science itself. We argue that, in practice, cognitive science and folk psychology treat entirely non-overlapping domains: cognitive science considers aspects of mental life which do not depend on general knowledge, whereas folk psychology considers aspects of mental life which do depend on general knowledge. We back up our argument on theoretical grounds, and also illustrate the separation between cognitive scientific and folk psychological phenomena in a number of cognitive domains. We consider the methodological and theoretical significance of our arguments for cognitive science research.

Key words

Folk psychology modularity defeasible reasoning knowledge representation propositional attitudes language cognition perception functional architecture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Bakar, M. & Chater, N. (1993), ‘Processing time-warped sequences using recurrent neural networks: Modelling rate-dependent factors in speech perception’Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society, Hillsdale, NJ: Lawrence Erlbaum, 191–197.Google Scholar
  2. Allen, J., Hendler, J. & Tate, A. (Eds.) (1990),Readings in Planning, San Mateo, California: Morgan Kaufman.Google Scholar
  3. Altmann, G. (Ed.) (1989),Language and Cognitive Processes: Special Issue on Parsing and Interpretation, London and Utrecht: Lawrence Erlbaum Associates.Google Scholar
  4. Altmann, G. & Steedman, M. 1988 ‘Interaction with context during human sentence processing’,Cognition 30, 191–238.Google Scholar
  5. Baddeley, A. D. (1990),Human Memory: Theory and Practice, Boston: Allyn and Bacon.Google Scholar
  6. Bartlett, F. C. (1932),Remembering: A Study in Experimental and Social Psychology, Oxford: Cambridge University Press.Google Scholar
  7. Bechtel, W. & Abramson, A. (Eds.) (1991),Connectionism and the Mind: An Introduction to Parallel Distributed Processing in Networks, Oxford: Blackwell.Google Scholar
  8. Brachman, R. & Levesque, H. (Eds.) (1985),Readings in Knowledge Representation, Los Altos, California: Morgan Kaufman.Google Scholar
  9. Braddick, O. J. (1979) ‘Low- and high-level processes in apparent motion’,Philosophical Transactions of the Royal Society of London. B 290, 137–151.Google Scholar
  10. Braine, M. D. S. (1990), ‘The “natural logic” approach to reasoning’, In W. F. Overton (Ed.),Reasoning, Necessity and Logic: Developmental Perspectives, Hillsdale, NJ: Erlbaum.Google Scholar
  11. Bransford, J. D., Barclay, J. R. & Franks, J. J. (1972), ‘Sentence memory: A constructive versus interpretative approach’,Cognitive Psychology 3, 193–209.Google Scholar
  12. Bruner, J. (1957), ‘On perceptual readiness’,Psychological Review 65, 14–21.Google Scholar
  13. Bruner, J. (1990),Acts of Meaning, Cambridge, Mass: Harvard University Press.Google Scholar
  14. Carey, S. (1988), ‘Conceptual differences between children and adults’,Mind and Language, 3, 167–181.Google Scholar
  15. Chater, N. & Oaksford, M. (1990), Logicist cognitive science and the falsity of common sense theories. Technical Report UWB-CNU-TR-90-4, Cognitive Neurocomputation Unit, Department of Psychology, University of Wales, Bangor.Google Scholar
  16. Chater, N. & Oaksford, M. R. (1993), ‘Logicism, mental models and everyday reasoning: Reply to Garnham’,Mind & Language 8, 72–89.Google Scholar
  17. Chomsky, N. (1965),Aspects of a Theory of Syntax, Cambridge, Mass: MIT Press.Google Scholar
  18. Chomsky, N. (1980),Rules and Representations, Oxford: Blackwell.Google Scholar
  19. Churchland, P. M. (1981), ‘Eliminative materialism and the propositional attitudes’,Journal of Philosophy 78, 67–90.Google Scholar
  20. Churchland, P. M. (1989),A Neurocomputational Perspective, Cambridge, Mass: Bradford Books/MIT Press.Google Scholar
  21. Churchland, P. S. (1986),Neurophilosophy, Cambridge Mass: Bradford Books/MIT Press.Google Scholar
  22. Clark, K. (1978), ‘Negation as failure’, in H. Gallaire & J. Minker (Eds.),Logic and Databases, New York: Plenum Press, pp 293–322.Google Scholar
  23. Coulter, J. (1979),The Social Construction of Mind, London: Macmillan.Google Scholar
  24. Coulter, J. (1983),Rethinking Cognitive Theory, London: Macmillan.Google Scholar
  25. Crain, S. & Steedman, M. (1985), ‘On not being led up the garden path: The use of context by the psychological parser’, in Dowty, D., Karttunen, L. and Zwicky, A. (Eds),Natural Language Parsing: Psychological, Computational and Theoretical Perspectives. Cambridge: Cambridge University Press.Google Scholar
  26. Davis, E. (Ed.) (1990),Representations of Commonsense Knowledge, Los Altos, California: Morgan Kaufman.Google Scholar
  27. Derthick, M. (1987), A connectionist architecture for representing and reasoning about structured knowledge. Technical Report CMU-BOLTZ-29, Department of Computer Science, Carnegie-Mellon University.Google Scholar
  28. Devitt, M. (1990), ‘A narrow representational theory of mind’, in W. Lycan (Ed.),Mind and Cognition, Oxford: Blackwell, pp. 371–398.Google Scholar
  29. Doyle, J. (1979), ‘A truth maintenance system’,Artificial Intelligence 12, 231–272.Google Scholar
  30. Dreyfus, H. L. & Dreyfus, S. E. (1986),Mind over Machine: The Power of Human Intuition and Expertise in the Era of the Computer, New York: The Free Press.Google Scholar
  31. Ebbinghaus, H. (1885, translated 1913),Memory, New York: Teachers College Press.Google Scholar
  32. Fodor, J. A. (1975),The Language of Thought, New York: Thomas Crowell.Google Scholar
  33. Fodor, J. A. (1980), ‘Methodological solipsism considered as a research strategy in cognitive psychology’,Behavioral and Brain Sciences 3, 63–109.Google Scholar
  34. Fodor, J. A. (1983),Modularity of Mind, Cambridge, Mass: MIT Press.Google Scholar
  35. Fodor, J. A. (1986), ‘Banish DisContent’, in J. Butterfield (Ed.),Language, Mind and Logic, Cambridge University Press, reprinted in W. Lycan (Ed.) (1990),Mind and Cognition, Oxford: Blackwell, pp. 420–438.Google Scholar
  36. Fodor, J. A. (1987),Psychosemantics: The Problem of Meaning in the Philosophy of Mind, Cambridge, Mass: MIT Press.Google Scholar
  37. Fodor, J. A. & Pylyshyn, Z. W. (1988), ‘Connectionism and cognitive architecture: A critical analysis’,Cognition 28, 3–71.Google Scholar
  38. Frazier, L. (1979), On Comprehending Sentences: Syntactic Parsing Strategies. PhD Dissertation, Indiana University Linguistics Club.Google Scholar
  39. Freuder, E. C. (1974), A computer vision system for visual recognition using active knowledge. MIT A.I. Laboratory, Technical Report 345.Google Scholar
  40. Garnham, A. (1993), ‘Is logicist cognitive science possible?’,Mind and Language 8, 49–71.Google Scholar
  41. Gazdar, G., Klein, E., Pullum, G. and Sag, I. (1985),Generalized Phrase Structure Grammar, Cambridge, Mass: Harvard University Press.Google Scholar
  42. Gigerenzer, G. (1993), ‘The bounded rationality of probabilistic mental models’, in K. I. Manktelow & D. E. Over (Eds.),Rationality: Psychological and Philosophical Perspectives, London: Routledge, pp 284–313.Google Scholar
  43. Ginsberg, M. L. (1986), ‘Multi-valued logics’, inProceedings of the Fifth National Conference on Artificial Intelligence, pp 243–247.Google Scholar
  44. Ginsberg, M. L. (Ed.) (1987)Readings in Nonmontonic Reasoning, Los Altos, California: Morgan Kaufman.Google Scholar
  45. Grunberg, M. M., Morris, P. E. & Sykes, R. N. (Eds.) (1988),Practical Aspects of Memory. Vol 2, London: Wiley.Google Scholar
  46. Hanks, S. & McDermott, D. (1985), ‘Default reasoning, nonmonotonic logics, and the frame problem’, inProceedings of the American Association for Artificial Intelligence, Philadelphia, PA.Google Scholar
  47. Haugeland, J. (1978), ‘The nature and plausibility of cognitivism’,Behavioral and Brain Sciences 3, 63–73.Google Scholar
  48. Hinton, G. E. (1981), ‘Implementing semantic networks in parallel hardware’, in G. E. Hinton & J. A. Anderson (Eds.),Parallel Models of Associative Memory, Hillsdale, NJ: Erlbaum.Google Scholar
  49. Horgan, T & Woodward, J. (1985), ‘Folk psychology is here to stay’,The Philosophical Review XCIV; reprinted in W. Lycan (Ed.) (1990),Mind and Cognition, Oxford: Blackwell, pp. 399–420.Google Scholar
  50. Israel, D. (1980), ‘What's wrong with non-monotonic logic?’ inProceedings of the First National Conference on Artificial Intelligence, pp, 99–101.Google Scholar
  51. Johnson-Laird, P. N. & Byrne, R. M. J. (1991),Deduction, Hove, UK: Erlbaum.Google Scholar
  52. Julesz, B. (1960), ‘Binocular depth perception of computer generated patterns’,Bell Systems Technical Journal 39, 1125–1162.Google Scholar
  53. Julesz, B. (1971),Foundations of Cyclopean Perception, Chicago: University of Chicago Press.Google Scholar
  54. Julesz, B. (1975), ‘Experiments in the visual perception of texture’,Scientific American 232, 34–43.Google Scholar
  55. Kahneman, D., Slovic, P. & Tversky, A. (1982),Judgement under Uncertainty: Heuristics and Biases, New York: Cambridge University Press.Google Scholar
  56. Kaplan, R. and Bresnan, J. (1982), ‘Lexical-functional grammar: a formal system for grammatical representation’, in Bresnan, J. (Ed.),The Mental Representation of Grammatical Relations, Cambridge, Mass: MIT Press.Google Scholar
  57. Lakoff, G. (1986),Women Fire and Dangerous Things: What Categories Tell Us about the Nature of Thought, Chicago: University of Chicago Press.Google Scholar
  58. Linsker, R. (1988), ‘Self-Organisation in a Perceptual Network’,Computer, March 1988, 21, 3, I 105–117.Google Scholar
  59. Marr, D. (1982),Vision: A Computational Investigation into the Representation and Processing of Visual Information, New York: Freeman.Google Scholar
  60. McCarthy, J. (1980), ‘Circumscription — A form of non-monotonic reasoning’,Artificial Intelligence 13, 27–39.Google Scholar
  61. McCarthy, J. & Hayes, P. (1969), ‘Some philosophical problems from the standpoint of artificial intelligence’, in B. Meltzer and D. Michie (Eds.)Machine Intelligence 4, Edinburgh University Press.Google Scholar
  62. McClelland, J. L. & Elman, J. L. (1986), ‘Interactive processes in speech perception: The TRACE model’, in D. E. Rumelhart & J. L. McClelland (Eds.),Parallel Distributed Processing: Explorations in the Microstructures of Cognition. Vol 2, Cambridge, Mass: Bradford Books/MIT Press, pp. 58–121.Google Scholar
  63. McDermott, D. (1982), ‘Non-monotonic logic II: non-monotonic model theories’,Journal of the ACM 29, 33–57.Google Scholar
  64. McDermott, D. (1987), ‘A critique of pure reason’,Computational Intelligence, 3, 151–160.Google Scholar
  65. McDermott, D. & Doyle, J. (1980), ‘Non-monotonic logic I’,Artificial Intelligence 13, 41–72.Google Scholar
  66. Miller, G. A. (1956), ‘The magical number seven, plus or minus two: Some limits on our capacity for processing information’,Psychological Review 63, 81–97.Google Scholar
  67. Minsky, M. (1975), ‘A framework for representing knowledge’, in P. Winston (Ed.),The Psychology of Computer Vision, New York: McGraw Hill.Google Scholar
  68. Moore, R. (1985), ‘Semantical considerations in nonmonotonic logic’,Artificial Intelligence 25, 75–94.Google Scholar
  69. Neisser, U. (1967),Cognitive Psychology, New York: Appleton-Century-Crofts.Google Scholar
  70. Neisser, U. (1982),Memory Observed, San Francisco: Freeman.Google Scholar
  71. North, D. W. (1968), ‘A tutorial introduction to decision theory’, Reprinted in: G. Schafer and J. Pearl (Eds.),Readings in Uncertain Reasoning, San Mateo, California: Morgan Kaufman, pp. 68–78.Google Scholar
  72. Oaksford, M. & Chater, N. (1991), ‘Against logicist cognitive science’,Mind and Language 6, 1–38.Google Scholar
  73. Oaksford, M., Chater, N. & Stenning, K. (1990), ‘Connectionism, classical cognitive science and experimental psychology’,AI and Society 4, 73–90.Google Scholar
  74. O'Brien, D. P. (1993), ‘Mental logic and human irrationality’, in K. I. Manktelow & D. E. Over (Eds.),Rationality: Psychological and Philosophical Perspectives, London: Routledge, pp. 110–135.Google Scholar
  75. Pearl, J. (1988),Probabilistic Reasoning in Intelligent Systems, San Mateo, CA: Morgan Kaufman.Google Scholar
  76. Perlis, D. (1987), ‘On the consistency of commonsense reasoning’,Computational Intelligence 2, 180–190.Google Scholar
  77. Pylyshyn, Z. W. (1984),Computation and Cognition: Toward a Foundation for Cognitive Science, Montgomery, Vermont: Bradford Books/MIT Press.Google Scholar
  78. Quine, W. V. O. (1953), ‘Two dogmas of empiricism’, in W. V. O. Quine,From a Logical Point of View, Cambridge, Mass: Harvard University Press.Google Scholar
  79. Ramsey, W., Stich, S. & Garon, J. (1990), ‘Connectionism, eliminitavism, and the future of folk psychology’, in Tomberlin, J. E. (Ed.),Philosophical Perspectives, Volume 4: Action Theory and the Philosophy of Mind, Atascadero, CA: Ridgeview.Google Scholar
  80. Reiter, R. (1980), ‘A logic for default reasoning’,Artificial Intelligence 13, 81–132.Google Scholar
  81. Reiter, R. (1985), ‘On reasoning by default’, in R. Brachman and H. Levesque (Eds.),Readings in Knowledge Representation, Los Altos, California: Morgan Kaufman.Google Scholar
  82. Richards, W. (Ed.) (1988),Natural Computation, Cambridge, Mass: Bradford Books/MIT Press.Google Scholar
  83. Rumelhart, D. E., Lindsey, P. H. & Norman, D. A. (1972), ‘A process model for long-term memory’, in E. Tulving and W. Donaldson (Eds.),Organization of Memory, New York: Academic Press.Google Scholar
  84. Rumelhart, D. E. & McClelland, J. L. (1986), ‘On learning the past tenses of English verbs’, in D. E. Rumelhart & J. L. McClelland (Eds.),Parallel Distributed Processing: Explorations in the Microstructures of Cognition. Vol. 2. Cambridge, Mass: Bradford Books/MIT Press, pp. 216–271.Google Scholar
  85. Rumelhart, D. E., Smolensky, P., McClelland, J. L. & Hinton, G. E. (1986), ‘Schemata and sequential thought processes in PDP models’, in D. E. Rumelhart & J. L. McClelland (Eds.),Parallel Distributed Processing: Explorations in the Microstructures of Cognition. Vol 2. Cambridge, Mass: Bradford Books/MIT Press pp. 7–57.Google Scholar
  86. Sanger, T. (1993), ‘A practice strategy for robot learning control’, in S. J. Hanson, J. D. Cowan & C. L. Giles (Eds.),Advances in Neural Information Processing Systems 5, San Mateo, CA: Morgan Kaufman, pp. 335–341.Google Scholar
  87. Schacter, R. D. (1986), ‘Evaluating influence diagrams’, Reprinted in: G. Schafter and J. Pearl (Eds.),Readings in Uncertain Reasoning, San Mateo, California: Morgan Kaufman, pp. 79–90.Google Scholar
  88. Schafer, G. & Pearl, J. (Eds.) (1990),Readings in Uncertain Reasoning, San Mateo, California: Morgan Kaufman.Google Scholar
  89. Schank, R. C. (1975),Conceptual Information Processing, Amsterdam: North Holland.Google Scholar
  90. Seidenberg, M. & McClelland, J. L. (1989) A distributed, developmental model of word recognition and naming’,Psychological Review 96, 523–568.Google Scholar
  91. Shafer, G. & Pearl, J. (1990),Readings in Uncertain Reasoning, San Mateo, California: Morgan Kaufman.Google Scholar
  92. Shastri, L. (1985), Evidential reasoning in semantic networks: A formal theory D and its parallel implementation. TR166, Department of Computer Science, University of Rochester.Google Scholar
  93. Shoham, Y. (1987), ‘Non-monotonic logics’, M. L. Ginsberg (Ed.),Readings in Non-Monotonic Reasoning. Los Altos, California: Morgan Kaufman.Google Scholar
  94. Shotter, J. (1975),Images of Man in Psychological Research, London: Metheun.Google Scholar
  95. Skinner, B. F. (1957),Verbal Behavior, New York: Appleton-Century-Crofts.Google Scholar
  96. Smolensky, P. (1987), On variable binding and the representation of symbolic structures in connectionist systems. Technical Report CU-CS-355-87, Department of Computer Science, University of Colorado at Boulder.Google Scholar
  97. Stich, S. (1983),From Folk Psychology to Cognitive Science, Cambridge, Mass: Bradford Books/MIT Press.Google Scholar
  98. Storms, M. & Nisbett, R. (1970), ‘Insomnia and the attribution process’,Journal of Personality and Social Psychology 16, 319–328.Google Scholar
  99. Sutton, R. S. & Barto, A. G. (1991). ‘Time derivative models of Pavlovian reinforcement’, in M. Gabriel and J. W. Moore (Eds.),Learning and Computational Neuroscience, Cambridge, Mass: MIT Press.Google Scholar
  100. Swinney, D. (1979), ‘Lexical access during sentence comprehension: (Re)consideration of context effects’,Journal of Verbal Learning and Verbal Behavior 18, 645–659.Google Scholar
  101. Taft, M. (1991),Reading and the Mental Lexicon, Erlbaum: Hillsdale, NJ.Google Scholar
  102. Tenenbaum, J. M. & Barrow, H. G. (1976), Experiments in interpretation-guided segmentation. Stanford Research Institute, Technical Note 123.Google Scholar
  103. Touretzky, D. S. & Hinton G. E. (1985), ‘Symbols among the neurons: Details of a connectionist inference architecture’, inProceedings of the Ninth International Joint Conference on Artificial Intelligence, pp. 238–243.Google Scholar
  104. Uno, Y., Fukumura, N., Suzuki, R & Kawato, M. (1993), ‘Integration of visual and somatosensory information for preshaping hand in grasping movements’, in S. J. Hanson, J. D. Cowan & C. L. Giles (Eds.),Advances in Neural Information Processing Systems 5, San Mateo, CA: Morgan Kaufman, pp, 311–318.Google Scholar
  105. Weld D. S. & De Kleer, J. (Eds.) (1990),Readings in Qualitative Reasoning about Physical Systems, Los Altos, California: Morgan Kaufman.Google Scholar
  106. Zemel, R.S. (1989), TRAFFIC: A Connectionist Model of Object Recognition. Technical Report CRG-TR-89-2, Department of Computer Science, University of Toronto.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Martin Pickering
    • 1
  • Nick Chater
    • 2
  1. 1.Human Communication Research Centre, Department of PsychologyUniversity of GlasgowGlasgowScotland
  2. 2.Department of PsychologyUniversity of EdinburghEdinburghScotland

Personalised recommendations