Neurochemical Research

, Volume 15, Issue 7, pp 751–754 | Cite as

Modulation of Mn2+ accumulation in cultured rat neuronal and astroglial cells

  • G. Tholey
  • L. Megias-Megias
  • F. C. Wedler
  • M. Ledig
Original Articles


The effects of physiological concentrations of K+ on Mn2+ accumulation were compared in rat glial cells and neurons in culture. Increasing the K+ concentration in growth medium increased significantly the Mn2+ level of the cultivated cells, with glial cells more affected than neurons. Ethanol markedly increased the Mn2+ accumulation within glia but not within neurons while ouabaïn caused inhibition of Mn2+ uptake with neurons and glial cells. A modulation of the total protein synthesis by Mn2+ and ethanol level in the growth medium was observed with glial cells. These data suggest that the mechanisms involved in Mn2+ accumulation in glial cells are different from those present in neurons. Moreover, the results are consistent with the hypothesis that Mn2+ plays a regulatory role in glial cell metabolism.

Key Words

Glial cells Neurons Mn2+ accumulation K+-effect trace elements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roger, J. M., Keen, C. L., and Hurley, L. S. 1985. Zinc, copper and manganese deficiencies in prenatal and neonatal development with special reference to the central nervous system. Pages 3–34,in Gabay, S., Harris, J., and Ho, B. T., (eds). Metal ions in neurobiology and psychiatry. Alan R. Liss, New York.Google Scholar
  2. 2.
    Kristensen, K., Eriksson, H., Lundh, B., Plantin, L., Wachtmeister, L., El-Azazi, M., Morath, C., Heilbrom E. 1986. Effects of MnCl2 on the rat developing nervous system. Acta Pharmacol. Toxicol. 59:345–348.Google Scholar
  3. 3.
    Donaldson, J. 1981. The pathophysiology of trace metal neurotransmitter interaction in the CNS. Trends in Pharmacol. Sci. 2:75–78.Google Scholar
  4. 4.
    Saric, M. 1986. Manganese Pages 354–386,in Friberg, L., Nordberg, G.F., and Vouk, V. (eds.), Handbook on the toxicology of metals (2nd ed) Elsevier Sc. Publishers.Google Scholar
  5. 5.
    Tholey, G., Ledig, M., Mandel, P., Sargentini, L., Frivold, A. H., Leroy, M., Grippo, A. A., Wedler, F. C. 1988. Concentrations of physiologically important metal ions in glial cells cultured from chick cerebral cortex. Neurochem. Res. 13:45–50.Google Scholar
  6. 6.
    Tholey, G., Ledig, M., Kopp, P., Sargentini-Maier, L., Leroy, M., Grippo, A. A., Wedler, F. C. 1988. Levels and subcellular distribution of physiologically important metal iions in neuronal cells cultured from chick embryo cerebral cortex. Neurochem. Res. 13:1163–1167.Google Scholar
  7. 7.
    Wedler, F. C., Ley, B. W., Grippo, A. M. 1989. Manganese (II): dynamics and distribution in glial cells cultured from chick cerebral cortex. Neurochem. Res. 14:1129–1135.Google Scholar
  8. 8.
    Weibel, M., Pettmann, B., Daune, G., Labourdette, G., Sensenbrenner, M. 1984. Chemically defined medium for the rat astroglial cells in primary culture. Int. J. Dev. Neurosci. 2:355–366.Google Scholar
  9. 9.
    Gensburger, C., Labourdette, G., Sensenbrenner 1986. Influence of meningeal cells on the proliferation and maturation of rat neuroblasts in culture. Exp. Brain Res. 63:321–330.Google Scholar
  10. 10.
    Lowry, O. H., Rosenbrough, N. J., FArr, A. L., Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. biol. Chem. 193:265–275.Google Scholar
  11. 11.
    Braitman, D. J., Coyle, J. T. 1987. Inhibition of kainic acid receptor binding by divalent cations correlates with ion affinity for the calcium channel. Neuropharmacol. 26:1247–1251.Google Scholar
  12. 12.
    Keen, C. L., Lonnerdal, B., and Hurley, L. S. 1985. Manganese Pages 89–132,in Frieden, E. (ed) Biochemistry of the essential ultratrace elements, Plenum, New-York.Google Scholar
  13. 13.
    Tholey, G., Bloch, S., Ledig, M., Mandel, P., Wedler, F. C. 1987. Chick brain glutamine synthetase and Mn2+, Mg2+ interactions. Neurochem. Res. 12:1041–1047.Google Scholar
  14. 14.
    Saudermann, A. J., Stockton, J. D. 1988. Effects of increased extracellular K on the elemental composition and water content of neuron and glial cells in Leech CNS. J. Neurochem. 51:1797–1807.Google Scholar
  15. 15.
    Hertz, L. 1986. Potassium transport in astrocytes and neurons in primary cultures. Ann. N.Y. Acad. Sci. 481:318–333.Google Scholar
  16. 16.
    Grisar, T., Franck, G., Schoffeniels, E. 1978 “K+ activation mechanisms of the (Na+,K+) ATPase of bulk isolated glia and neurons” in Schoffeniels, E., Franck, G., Towers, D.B., Hertz, L. (eds): “Dynamic Properties of Glia Cells”. pp. 359–369, Pergamon Press.Google Scholar
  17. 17.
    Ledig, M., Kopp, P., Mandel, P. 1985. Effect of ethanol on adenosine triphosphatase and enolase activities in rat brain and in cultured nerve cells. Neurochem. Res. 10:1311–1324.Google Scholar
  18. 18.
    Davidson, M., Wilce, P., Shanley, B. 1988. Ethanol increases synaptosomal free calcium concentration. Neurosci. Letters, 89:165–169.Google Scholar
  19. 19.
    Ledig, M., Mandel, P. 1988. Alcool et Neurochimie. Médecine/Sciences, 6:352–357.Google Scholar
  20. 20.
    Doherty, J. D., Salem, N. Jr., Lauter, C. J., Trams, E. G. (1983) Mn2+ stimulated ATPase in rat brain. Neurochem. Res. 8:493–500.Google Scholar
  21. 21.
    Dohertry, J. D., Salem, N. Jr., Lauter, C. J. Trams, E. G. (1981) Mn2+ and Ca++ ATPase in lobster axon plasma membranes and their inhibition by pesticides. Comp. Biochem. Physiol. 590:185–190.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • G. Tholey
    • 1
  • L. Megias-Megias
    • 2
  • F. C. Wedler
    • 3
  • M. Ledig
    • 1
  1. 1.Centre de Neurochimie du CNRSStrasbourg CedexFrance
  2. 2.Faculty of MedicineUniversity of GranadaGranada(Spain)
  3. 3.Department of Molecular and Cell BiologyThe Pennsylvania State UniversityUniversity Park(USA)

Personalised recommendations