Neurochemical Research

, Volume 13, Issue 7, pp 671–677 | Cite as

Cell membranes: The electromagnetic environment and cancer promotion

  • W. R. Adey
Original Articles


Use of weak electromagnetic fields to study the sequence and energetics of events that couple humoral stimuli from surface receptor sites to the cell interior has identified cell membranes as a primary site of interaction, with these low frequency fields. Field modulation of cell surface chemical events indicates a major amplification of initial weak triggers associated with binding of hormones, antibodies and neurotransmitters to their specific binding sites. Calcium ions play a key role in this stimulus amplification, probably through highly cooperative alterations in binding to surface glycoproteins, with spreading waves of altered calcium binding across the membrane surface. Protein particles spanning the cell membrane form pathways for signaling and energy transfer. Fields millions of times weaker than the membrane potential gradient of 105V/cm modulate cell responses to surface stimulating molecules. The evidence supports nonlinear, nonequilibrium processes at critical steps in transmembrane signal coupling. Powerful cancer-promoting phorbol esters act at cell membranes to stimulate ornithine decarboxylase which is essential for cell growth and DNA synthesis. This response is enhanced by weak microwave fields, also acting at cell membranes.

Key Words

Cell membranes transductive coupling electromagnetic fields cancer promotion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adey, W. R. 1981. Tissue interactions with nonionizing electromagnetic fields. Physiol. Rev. 61:435–514.Google Scholar
  2. 2.
    Adey, W. R. 1981. Ionic nonequilibrium phenomena in tissue interactions with electromagnetic fields. Pages 271–297,in Illinger, K. H. (ed.), Biological effects of nonionizing radiation, American Chemical Society, Washington, DC.Google Scholar
  3. 3.
    Adey, W. R. 1983. Molecular aspects of cell membranes as substrates for interaction with electromagnetic fields. Pages 201–211,in Basar, E., Flohr, H., Haken, H., and Mandell, A. J. (eds.), Synergetics of the brain, Springer, New York.Google Scholar
  4. 4.
    Adey, W. R. 1984. Nonlinear, nonequilibrium aspects of electromagnetic field interactions at cell membranes. Pages 3–22,in Adey, W. R., and Lawrence, A. F. (eds.), Nonlinear electrodynamics in biological systems, Plenum Press, New York.Google Scholar
  5. 5.
    Adey, W. R. 1986. The sequence and energetics of cell membrane transductive coupling to intracellular enzyme systems. Bioelectrochem. Bioenergetics 15:447–456.Google Scholar
  6. 6.
    Hodgkin, A. L., and Huxley, A. F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. London 117:500–517.Google Scholar
  7. 7.
    Luben, R. A., Cain, C. D., Chen, M.-Y., Rosen, D. M., and Adey, W. R. 1982. Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of responses to parathyroid hormone by low-energy, low-frequency fields. Proc. Nat. Acad. Sci. USA 79:4180–4183.Google Scholar
  8. 8.
    Davson, H., and Danielli, J. F. 1952. The permeability of natural membranes, 2nd Edition. Cambridge University Press, Cambridge.Google Scholar
  9. 9.
    Hydén, H. 1974. A calcium-dependent mechanism for synapse and nerve cell membrane membrane modulation. Proc. Nat. Acad. Sci. USA 71:2965–2968.Google Scholar
  10. 10.
    Edelman, G. M. 1976. Surface modulation in cell recognition and cell growth. Science 192:218–226.Google Scholar
  11. 11.
    Nishizuka, Y. 1984. The role of protein kinase C in cell surface transduction and tumor promotion. Nature 308:693–697.Google Scholar
  12. 12.
    Ehrlich, Y. H., Davis T. B., Bock, D. E., Kornecki, E., and Lenox, R. H. 1986. Ecto-protein kinase activity on the external surface of neural cells Nature 320:67–69.Google Scholar
  13. 13.
    Bawin, S. M., and Adey, W. R. 1976. Sensitivity of calcium binding in cerebral tissue to weak environmental oscillating low frequency electric fields. Proc. Nat. Acad. Sci USA 73:1999.Google Scholar
  14. 14.
    Bawin, S. M., Kaczmarek, L. K., and Adey, W. R. 1975. Effects of modulated VHF fields on the central nervous system. Ann. NY Acad. Sci. 247:74–91.Google Scholar
  15. 15.
    Lin-Liu, S., and Adey, W. R. 1982. Low frequency amplitude-modulated microwave fields change calcium efflux rates from synaptosomes. Biolelectromagnetics 3:309–322.Google Scholar
  16. 16.
    Bawin, S. M., Sheppard, A. R., and Adey, W. R. 1978. Possible mechaniisms of weak electromagnetic field coupling in brain tissue. Bioelectrochem. Bioenergetics 5:67–76.Google Scholar
  17. 17.
    Blackman, C. F., Elder, J. A., Weil, C. M., Benane, S. G., Eichinger, D. C., and House, D. E. 1979. Induction of calcium on efflux from brain tissue by radio frequency radiation; effects of modulation frequency and field strength. Radio Sci. 14:93–98.Google Scholar
  18. 18.
    Adey, W. R., Bawin, S. M., and Lawrence, A. F. 1982. Effects of weak amplitude-modulated microwave fields on calcium efflux from awake cat cerebral cortex. Bioelectromagnetics 3:295–307.Google Scholar
  19. 19.
    Blackman, C. F., Benane, S. G., Kinney, L. S., Joines, W. T., and House, D. E. 1982. Effects of ELF fields on calciumion efflux from brain tissue in vitro. Radiation Res. 92:510–520.Google Scholar
  20. 20.
    Blackman, C. F., Benane, S. G., House, D. E., and Joines, W. T. 1985. Effects of ELF (1–120), Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro. Biolelectromagnetics 6:1–11.Google Scholar
  21. 21.
    Dutta, S. K., Subramoniam, A., Ghosh, B., and Parshad, R. 1984. Microwave radiation-induced calcium efflux from brain tissue, in vitro. Bioelectromagnetics 6:1–12.Google Scholar
  22. 22.
    Rosen, D. M., and Luben, R. A. 1983. Multiple hormonal mechanisms for the control of collagen synthesis in an osteoblast-like cell line, MMB-1. Endocrinology 112:992–999.Google Scholar
  23. 23.
    Luben, R. A., and Cain, C. D. 1984. Use of bone cell hormone response systems to investigate bioelectromagnetic effects on membranes in vitro. Pages 23–33,in Adey, W. R., and Lawrence, A. F., (eds.), Nonlinear electrodynamics in biological systems, Plenum Press, New York.Google Scholar
  24. 24.
    Ullrich, A., Coussens, L., Hayflick, J. S., Dull, T. J., Gray, A., Tam, A. W., Lee, J., Yarden, Y. Libermann, T. A., Schlessinger, J., Downard, J., Mayes, E. L. V., Whittle, N., Waterfield, M. D., and Seeburg, P. H. 1985. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309:418–421.Google Scholar
  25. 25.
    Lawrence, A. F., and Adey, W. R. 1982. Nonlinear wave mechanisms in interactions between excitable tissue and electromagnetic fields. Neurol. Res. 4:115–153.Google Scholar
  26. 26.
    Moolenaar, W. H., Aerts, R. J., Tertoolen, L. G. J., and De Laat, S. W. 1986. The epidermal growth factor-induced calcium signal in A431 cells J. Biol. Chem. 261:279–285.Google Scholar
  27. 27.
    Byus, C. V., Lundak, R. L., Fletcher, R. M., and Adey, W. R. 1984. Alterations in protein kinase activity following exposure of cultured lymphocytes to modulated microwave fields. Bioelectromagnetics 5:34–51.Google Scholar
  28. 28.
    Lyle, D. B., Schechter, P., Adey, W. R., and Lundak, R. L. 1983. Suppression of T lymphocyte cytotoxicity following exposure to sinusoidally amplitude-modulated fields. Bioelectromagnetics 4:281–292.Google Scholar
  29. 29.
    Byus, C. V., Karten, K., Pieper, S. and Adey, W. R. 1987. Ornithine decarboxylase activity in liver cells is enhanced by low-level amplitude-modulated microwave fields. Cancer Res. (In press.)Google Scholar
  30. 30.
    Nishizuka, Y. 1983. Calcium, phospholipid and transmembrane signaling. Phil. Trans. Roy. Soc. London B320:101–112.Google Scholar
  31. 31.
    DeRiemer, S. A., Strong, J. A., Albert, K. A., Greengard, P., and Kaczmarek, L. K. 1985. Enhancement of calcium current in Aplysia neurons by phorbol ester and kinase C. Nature 313:316–319.Google Scholar
  32. 32.
    Balcer-Kubiczek, E. K., and Harrison, G. H. 1985. Evidence for microwave carcinogenesis in vitro. Carcinogenesis 6:859–864.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • W. R. Adey
    • 1
    • 2
  1. 1.Research Service (151)Pettis Memorial VA Medical CenterLoma Linda
  2. 2.Departments of Physiology and SurgeryLoma Linda University School of Medicine

Personalised recommendations