Lithuanian Mathematical Journal

, Volume 31, Issue 1, pp 133–142 | Cite as

On a uniform law of the iterated logarithm for sums mod 1 and Benford's law

  • P. Schatte
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    N. H. Bingham, “Variants on the law of the iterated logarithm,” Bull. London Math. Soc.,18, 433–477 (1986).Google Scholar
  2. 2.
    J. W. S. Cassels, “An extension of the law of the iterated logarithm,” Proc. Cambridge Philos. Soc.,47, 55–64 (1951).Google Scholar
  3. 3.
    K. L. Chung, “An estimate concerning the Kolmogorov limit distribution,” Trans. Am. Math. Soc.,67, 36–50 (1949).Google Scholar
  4. 4.
    M. Csörgö and P. Révész, Strong Approximations in Probability and Statistics, Budapest: Akademiai Kiado (1981).Google Scholar
  5. 5.
    V. A. Egorov, “Some limit theorems for m-dependent random variables,” Liet. Mat. Rinkinys,10, 51–59 (1970).Google Scholar
  6. 6.
    A. S. Fainleib, “A generalization of Esseen's inequality and an application of it to probabilistic number theory,” Izv. Akad: Nauk SSSR, Ser. Mat.,32, 859–879 (1968).Google Scholar
  7. 7.
    L. Heinrich, “A method for the derivation of limit theorems for sums of m-dependent random variables,” Z. Wahrsch. Verw. Gebiete,60, 501–515 (1982). ISSN 0044-3719.Google Scholar
  8. 8.
    L. Heinrich, “Nonuniform estimates, moderate and large deviations in the central limit theorem for m-dependent random variables,” Math. Nachr.,121, 107–121 (1985). ISSN 0025-584X.Google Scholar
  9. 9.
    V. M. Kruglov, “The parametric law of the iterated logarithm,” Teor. Veroyatn. Primen.,32, 73–81 (1987). ISSN 0040-361X.Google Scholar
  10. 10.
    L. Kuipers and H. Niederreiter Uniform Distribution of Sequences, Wiley, New York (1974).Google Scholar
  11. 11.
    R. Lapinskas, “A law of iterated logarithm for m-dependent random variables,” Liet. Mat. Rinkinys,27, 279–284 (1987). ISSN 0132-2818.Google Scholar
  12. 12.
    M. P. Lévy, “L'addition des variables aléatoires définies sur une circonference,” Bull. Soc. Math. France,67, 1–41 (1939).Google Scholar
  13. 13.
    M. Loeve, Probability Theory. I. Springer-Verlag, Berlin-Heidelberg-New York (1977).Google Scholar
  14. 14.
    A. I. Martikainen, Generalizations of the Law of the Iterated Logarithm II Probability Theory and Mathematical Statistics. Vol. II (Vilnius 1985). pp. 235–251. VNU Sci. Press Utrecht, 1987.Google Scholar
  15. 15.
    V. V. Petrov, Sums of Independent Random Variables, Academic Press (1985).Google Scholar
  16. 16.
    W. Philipp, Mixing sequences of random variables and probabilistic number theory,” AMS Mem., No. 114, 1–102 (1987).Google Scholar
  17. 17.
    H. Robbins, “On the equidistribution of sums of independent random variables,” Proc. Am. Math. Soc.,4, 786–799 (1957).Google Scholar
  18. 18.
    P. Schatte, “On the asymptotic uniform distribution of sums reduced mod 1,” Math. Nachr.,115, 275–281 (1985). ISSN 0025-584X.Google Scholar
  19. 19.
    P. Scbutte, “On the asymptotic uniform distribution of the n-fold convolution of a lattice distribution,” Math. Nachr.,128, 233–241 (1986). ISSN 0025-584X.Google Scholar
  20. 20.
    P. Schatte, “On a law of the iterated logarithm for sums mod 1 with application to Benford's law,” Probab. Th. Rel. Fields. Pt.77, 167–178 (1988).Google Scholar
  21. 21.
    P. Scbatte, “On mantissa distributions in computing and Benford's law,” J. Inf. Process. Cybern.,24, 443–455 (1988).Google Scholar
  22. 22.
    V. V. Shergin, “On the speed of convergence in the central limit theorem for m-dependent random variables,” Teor. Veroyatn. Primen.,24, 781–794 (1979). ISSN 0040-361X.Google Scholar
  23. 23.
    G. R. Shorsck and J. A. Wellner, Empirical Processes with Applications to Statistics, Wiley, New York (1986).Google Scholar
  24. 24.
    R. Yokoysma, “The law of the iterated logarithm for empirical distributions for m-dependent random variables,” Yokohama Math. J.,24, 79–91 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • P. Schatte

There are no affiliations available

Personalised recommendations