Neurochemical Research

, Volume 13, Issue 1, pp 45–50 | Cite as

Concentrations of physiologically important metal ions in glial cells cultured from chick cerebral cortex

  • G. Tholey
  • M. Ledig
  • P. Mandel
  • L. Sargentini
  • A. H. Frivold
  • M. Leroy
  • A. A. Grippo
  • F. C. Wedler
Original Articles


Energy dispersive x-ray fluorescence and atomic absorption spectroscopy were used to determine the concentrations of Mg, Ca, Mn, Fe, Zn, and Cu in primary cultures of astroglial cells from chick embryo cortex in chemically defined serum-free growth medium. The intracellular volume of cultured glia was determined to be 8.34 μl/mg protein. Intracellular Mn, Fe, Zn, and Cu in these cells were ca. 10–200 μM, or 20–200 times the concentrations in the growth medium. Mg2+ was 7 mM in glial cells, only four-fold higher than in growth medium. Glutamine synthetase (GS), compartmentalized in glia, catalyzes a key step in the metabolism of neurotransmitterl-glutamate as part of the glutamate/glutamine cycle between neurons and glia. Hormones (insulin, hydrocortisone, and cAMP) added to growth medium differentially altered the activity of GS and the intracellular level of Mn(II), but not Mg(II). These findings suggest the possibility that glutamine synthetase activity could be regulated in brain by the intracellular levels of Mn(II) or the ratio of Mn(II)/Mg(II), which may in turn be controlled indirectly by means of transport processes that respond to hormones or secondary metabolic signals.

Key Words

Manganese magnesium metal ions glial cells glutamine synthetase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Donaldson, J., St. Pierre, T., Minnich J. L., and Barbeau, A. 1973. Determination of Na+, K+, Mg2+, Cu2+, Zn2+, and Mn2+ in rat brain regions. Can. J. Biochem. 51:87–92.PubMedGoogle Scholar
  2. 2.
    Bonilla, E., Salazar, E., Villasmil, I. J., and Villalobos, R. 1982. The regional distribution of manganese in the normal human brain, Neurochem. Res. 7:221–227.PubMedGoogle Scholar
  3. 3.
    Matrone, G. 1970. Transition elements in biology: FASEB Nutrition Society symposium, Fed. Proc. 29:1461–1488.Google Scholar
  4. 4.
    Schramm, V. L. 1982. Metabolic regulation: could Mn2+ be involved? Trends Biochem. Sci. 7:369–371.Google Scholar
  5. 5.
    Williams, R. J. P. 1982. Free manganese(II) and iron(II) cations can act as intracellular cell controls. FEBS Lett. 140:3–10.PubMedGoogle Scholar
  6. 6.
    Manganese in Metabolism and Enzyme Function (in Wedler, F. C., and Schramm, V. L., eds.) Academic Press, New York, 1986.Google Scholar
  7. 7.
    Trace Elements in Nutrition of Childrenin Chandra, R. K., (ed.), Nestle Nutrition Workshop, vol. 8, Raven Press, New York, 1985.Google Scholar
  8. 8.
    Metal Ions in Neurology and Psychiatry,in Gabay, S., Harris, J., and Ho, B. T. (eds.) Neurology & Neurobiology, vol. 15, A. R. Liss, Inc., New York, 1985.Google Scholar
  9. 9.
    Nicholls, J. G., and Kuffler, S. W. 1965. Na and K content of glial cells and neurons determined by flame photometry in the central nervous system of the leech. J. Neurophysiol. 28:519–525.PubMedGoogle Scholar
  10. 10.
    Koch, A., Ranck, J. B., Jr., and Newman, B. L. 1962. Ionic content of the neuroglia. Exper. Neurol. 6:186–200.Google Scholar
  11. 11.
    Grossman, R., Lynch, L., and Shires, G. T. 1968. Ionic content and membrane potentials of cortical neurons and glia. Neurology 18:292.Google Scholar
  12. 12.
    Saubermann, A. J., and Scheid, V. L. 1985. Elemental composition and water content of neuron and glial cells in the central nervous system of the North American medicinal leech (Macrobdella decora) J. Neurochem. 44:825–834.PubMedGoogle Scholar
  13. 13.
    Dennis, S. C., Lai, J. C. K., and Clark, J. B., 1980. The distribution of glutamine synthetase in subcellular fractions of rat brain. Brain Res. 197:469–475.PubMedGoogle Scholar
  14. 14.
    Martinez-Hernandez, A., Bell, K. P., and Norenberg, M. D. 1977. Glutamine synthetase: glial localization in brain. Science 195:1356–1358.PubMedGoogle Scholar
  15. 15.
    Norenberg, M. D. 1979. The distribution of glutamine synthetase in the central nervous system. J. Histochem. Cytochem. 27:469–475.Google Scholar
  16. 16.
    Hallermayer, K., Harmening, C., and Hamprecht, B. 1981. Cellular localization and regulation of glutamine synthetase in primary cultures of brain cells from newborn mice. J. Neurochem. 37:43–52.PubMedGoogle Scholar
  17. 17.
    Walker, J. E. 1983. Glutamate GABA, and CNS disease: a review. Neurochem. Res. 8:521–550.PubMedGoogle Scholar
  18. 18.
    Patel, A., Weir, M. D., Hunt, A., Tahourdin, C. S. M. and Thomas, D. G. T. 1985. Distribution of glutamine synthetase and glial fibrillary acidic protein and correlation of glutamine synthetase with glutamate decarboxylase in different regions of rat central nervous system. Brain Res. 331:1–9.PubMedGoogle Scholar
  19. 19.
    Tholey, G., Ledig, M., Bloch, S., and Mandel, P. 1985. Glutamine synthetase and energy-metabolizing enzymes in cultured chick glial cells. Neurochem. Res. 10:191–200.PubMedGoogle Scholar
  20. 20.
    Miller, R. E., Hackenberg, R., and Gershman, H. 1978. Regulation of glutamine synthetase in cultured 3&3-L1 cells by insulin, hydrocortisone, and dibutyryl cyclic AMP. Proc. Nat. Acad. Sci., USA 75:1418–1422.Google Scholar
  21. 21.
    Patel, A. J., and Hunt, A. 1985. Observations on cell growth and regulation of glutamine synthetase by dexamethasone in primary cultures of forebrain and cerebellar astrocytes. Dev. Brain Res. 18:175–184Google Scholar
  22. 22.
    Ruel, J., and Dussault, J. H. 1985. Triiodothyronine increases glutamine synthetase in primary cultures of rat cerebellum. Dev. Brain Res. 21:83–88.Google Scholar
  23. 23.
    Tate, S. S., and Meister, A. 1971. Regulation of rat liver glutamine synthetase: activation by α-ketoglutarate and inhibition by glycine, alanine, and carbamyl-phosphate. Proc. Nat. Acad. Sci. USA 68:781–785.PubMedGoogle Scholar
  24. 24.
    Meister, A. 1974. Glutamine synthetase of mammals Pages 699–754,in “The Enzymes,” (Boyer, P. D., ed.), 3rd Ed., vol. 10, Academic Press, New York.Google Scholar
  25. 25.
    Wedler, F. C., and Toms, R. 1986. Interactions of Mn(II) with Mammalian Glutamine Syntehtase. Pages 221–238in Ref. Google Scholar
  26. 26.
    Pinkofsky, H. B., Maurizi, M. R. and Ginsburg, A. 1985. Binding Mn+2 or Mg+2 to active sites of glutamine synthetase from bovine brain. Fed. Proc. 44:1807.Google Scholar
  27. 27.
    Wedler, F. C., Denman, R. B., and Roby, W. G. 1982. Ovine brain glutamine synthetase is a Mn(II) enzyme. Biochemistry 21:6389–6397.PubMedGoogle Scholar
  28. 28.
    Sensenbrenner, M. 1977. Dissociated brain cells in primary culture, Pages 191–213,in Federoff, S., and Hertz, L. (eds.) Cell Tissue and Organ Culture in Neurobiology, Academic, New York.Google Scholar
  29. 29.
    Bottenstein, J. E., and Sato, G. H. 1979. Growth of a neuroblastoma cell line in serum-free supplemented medium. Proc. Nat. Acad. Sci. USA 76:514–517.PubMedGoogle Scholar
  30. 30.
    Rastegar, F., Maier, E. A. Heimberger, R., Christophe, C., Ruch, C., and Leroy, M. J. F. 1984. Simultaneous determination of trace elements in serum by energy-disperisive X-ray fluorescence spectrometry. Clin. Chem. 30:1300–1303.PubMedGoogle Scholar
  31. 31.
    Varma, A. “Atomic Absorption Analysis,” CRC Press, Boca Raton, 1984.Google Scholar
  32. 32.
    Bloch, S., Ledig, M., Mandel, P., and Tholey, G. 1984. Purification et characterisation de la glutamine synthetase de cerveau de poulet. C. R. Acad. Sci. Paris 298(III):127–130.PubMedGoogle Scholar
  33. 33.
    Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  34. 34.
    Kletzien, R. F., Parizi, M. W., Becker, J. E., and Potter, V. R. 1975. A method using 3-O-methyl-d-glucose and phloretin for the determination of intracellular water space of cells in monolayer culture. Anal. Biochem. 68:537–544.PubMedGoogle Scholar
  35. 35.
    Kimelberg, H. K., and Frangakis, M. V. 1985. Furosemide-and bumetimide-sensitive ion transport and volume control in primary astrocyte cultures from rat brain. Brain Res. 361:125–134.PubMedGoogle Scholar
  36. 36.
    Ash, D. E., and Schramm, V. L. 1982. Determination of free and bound manganese(II) in hepatocytes from fed and fasted rats. J. Biol. Chem. 257:9261–9264.PubMedGoogle Scholar
  37. 37.
    Dietmar, J. W., and Schlue, W. R. 1983. Intracellular Na+ and Ca2+ in leech retzius neurons during inhibition of the Na+−K+ pump. Pfluegers Arch. 397:195–201.Google Scholar
  38. 38.
    Schramm, V. L. 1985. Evaluation of Mn(II) in metabolic regulation: analysis of proposed sites for regulation. Pages 1109– Ref. 6.Google Scholar
  39. 39.
    Brandt, M., and Schramm, V. L. 1986. Mammalian manganese metabolism and manganese uptake and distribution in rat hepatocytes. Pages 3–16,in Ref. 6.Google Scholar
  40. 40.
    Schramm, V. L., and Brandt, M. 1986. The manganese(II) economy of rat hepatocytes. Fed. Proc. 45:2817–2820.PubMedGoogle Scholar
  41. 41.
    Cornford, E. M. 1985. The blood-brain barrier, a dynamic regulatory interface. Molec. Physiol. 7:219–260.Google Scholar
  42. 42.
    Goldstein, G. W., and Betz A. L. 1986. The blood-brain barrier. Scientific American 255:74–83.PubMedGoogle Scholar
  43. 43.
    Hurley, L., Woolley, D. E., Rosenthal, F., and Timiras, P. S. 1963. Influence of manganese on susceptibility of rats to convulsions. Amer. J. Physiol. 204:493–496.PubMedGoogle Scholar
  44. 44.
    Cook, D. B. 1985. Stimulation of cyclic-AMP production in chick renal tissue by cadmium and manganese. J. Inorg. Biochem. 24:223.PubMedGoogle Scholar
  45. 45.
    Kurokawa, T., Danura, T., and Ishibashi, S. (1984) Mode of interaction between forskolin and manganese ion in activating the catalytic unit of adenylate cyclase from rat brain. J. Pharm. Dynam. 7:665–670.Google Scholar
  46. 46.
    Lai, J. C. K., Lim, L., and Davison, A. N. 1982. Effects of Cd2+, Mn2+, and Al3+, on rat brain synaptosomal uptake of noradrenalin and seratonin. J. Inorg. Biochem. 17:215–225.PubMedGoogle Scholar
  47. 47.
    Doherty, J. D., Salem, N., Jr., Lauter, C. J., and Trams, E. G. 1983. Mn2+-stimulated ATPase in rat brain. Neurochem. Res. 8:493–499.PubMedGoogle Scholar
  48. 48.
    Gianatsos, G., and Murray, M. T. 1982. Alterations in brain dopamine and GABA following inorganic or organic manganese administration. Neuro Tox. 3:75–82.Google Scholar
  49. 49.
    Schoepp, D. D. 1985. Manganese stimulates incorporation of [3H]inositol into a pool of phosphatidyl-inositol in brain that is not coupled to agonist-induced hydrolysis. J. Neurochem. 45:1481–1486.PubMedGoogle Scholar
  50. 50.
    Eriksson, H., Morath, C., and Heilbronn, E. 1984. Effects of manganese on the nervous system. Acta Neurol. Scand. 70:89–93.Google Scholar
  51. 51.
    Lorkovic, H., and Feyer, A. 1984. Manganese ions inhibit acetyl choline receptor synthesis in cultured mouse soleus muscles. Neurosci. Lett. 51:331–335.PubMedGoogle Scholar
  52. 52.
    Magour, S., Maser, H., and Steffen, I. 1983. Effect of manganese on cerebral RNA polymerase and free ribosomal protein synthesis, Pages 287–292,in Brown, S. S., and Savory, J., (eds.) Chemical Toxicology and Clinical Chemistry of Metals Academic Press, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • G. Tholey
    • 1
  • M. Ledig
    • 2
  • P. Mandel
    • 2
  • L. Sargentini
    • 3
  • A. H. Frivold
    • 3
  • M. Leroy
    • 3
  • A. A. Grippo
    • 4
  • F. C. Wedler
    • 4
  1. 1.Laboratoire de Microbiologie, Institut LeBel-CNRSUniversite L. PasteurStrasbourgFrance
  2. 2.Centre de Neurochimie-CNRSUniversite L. PasteurStrasbourgFrance
  3. 3.Laboratoire de Chimie MineraleEcole Nationale Superieure de ChimieStrasbourgFrance
  4. 4.Dept. of Molecular & Cell Biology, Althouse LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations