Siberian Mathematical Journal

, Volume 34, Issue 5, pp 812–824 | Cite as

Computable classes of constructivizations for models of finite computability type

  • S. S. Goncharov
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. S. Goncharov, “The problem, of the number of nonautoequivalent constructivizations,” Algebra i Logika,19, No. 6, 621–639 (1980).Google Scholar
  2. 2.
    S. S. Goncharov, “On the number of nonautoequivalent constructivizations,” Algebra i Logika,16, No. 3, 257–289 (1977).Google Scholar
  3. 3.
    S. S. Goncharov, “Autostability, and computable families of constructivizations,” Algebra i Logika,14, No. 6, 647–680 (1975).Google Scholar
  4. 4.
    S. S. Goncharov, “Autostability of models and Abelian groups,” Algebra i Logika,19, No. 1, 23–44 (1980).Google Scholar
  5. 5.
    S. S. Goncharov and V. D. Dzgoev, “Autostability of models,”. Algebra i Logika,19, No. 1, 45–58 (1980).Google Scholar
  6. 6.
    V. P. Dobritsa, “Computability of certain classes of constructive algebras,” Sibirsk. Mat. Zh.,18, No. 3, 570–579 (1977).Google Scholar
  7. 7.
    V. P. Dobritsa, “Complexity of the index set of a constructive model,” Algebra i Logika,19, No. 1, 45–58 (1980).Google Scholar
  8. 8.
    Yu. L. Ershov, Decidability Problems and Constructive Models [in Russian], Nauka, Moscow (1980).Google Scholar
  9. 9.
    A. T. Nurtazin, “Strong and weak constructivizations and computable families,” Algebra i Logika,13, No. 3, 311–323 (1974).Google Scholar
  10. 10.
    C. J. Ash and A. Nerode, “Intrinsically recursive relations,” in: Aspects of Effective Algebra: Proc. Conf. at Monash. Univ., Australia, Upside Down a Book Company, 1981, pp. 24–41.Google Scholar
  11. 11.
    S. S. Goncharov, “Certain properties of constructivizations of Boolean algebras,” Sibirsk. Mat. Zh.,16, No. 2, 264–278 (1975).Google Scholar
  12. 12.
    S. S. Goncharov, “Bounded theories of constructive Boolean algebras,” Sibirsk. Mat. Zh.,17, No. 4, 797–812 (1976).Google Scholar
  13. 13.
    Yu. L. Ershov, The Theory, of Enumerations, [in Russian], Nauka, Moscow (1977).Google Scholar
  14. 14.
    H. Rogers, Theory of Recursive Functions and Effective Computability [Russian translation], Mir, Moscow (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • S. S. Goncharov

There are no affiliations available

Personalised recommendations