Neurochemical Research

, Volume 20, Issue 2, pp 159–169

Changes in extracellular levels of glutamate and aspartate in rat substantia nigra induced by dopamine receptor ligands: In vivo microdialysis studies

  • Jorge Abarca
  • Katia Gysling
  • Robert H. Roth
  • Gonzalo Bustos
Original Articles

Abstract

The microdialysis technique was utilized to study the local effects of D1 and D2 family type dopamine (DA) receptor (R) ligands on the in vivo release of endogenous glutamate (GLU) and aspartate (ASP) from rat substantia nigra (SN). Addition to the dialysis perfusion solution of either D1-R and D2-R agonists, such as SKF-38393 (50 and 100 μM) and Quinpirole (5 and 10 μM), resulted in dose-dependent increases in extracellular concentrations of GLU and ASP, respectively. The SKF-38393 and Quinpirole-induced effects were reduced by SCH-23390 (0.5 μM), a D1-R antagonist, and by Spiperone (1.0 μM), a D2-R antagonist, respectively. However, SCH-23390 and Spiperone did increase GLU and ASP extracellular concentrations. Local infusion with Tetrodotoxin (TTX) (1.0 μM), a blocker of voltage-dependent Na+ channels, increased basal extracellular levels of GLU. In addition, co-infusion of TTX and SKF-38393 evoked increases in extracellular GLU levels higher than those observed after SKF-38393 alone. Finally, chemical lesions of nigral DA cells with 6-OH-DA increased the basal extracellular levels of GLU. It is proposed that the release of GLU and ASP from SN may be regulated by D1- and D2-receptors present in this basal ganglia structure. In addition, part of the D1 receptors present in SN might be located presynaptically on GLU-containing nerve endings.

Key Words

Substantia nigra dopamine receptors glutamate aspartate in vivo release 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, G. E., and Crutcher, M. D. 1990. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends. Neurosci. 13:266–271.Google Scholar
  2. 2.
    Albin, R. L., Young, A. B., and Penny, J. B. 1989. The functional anatomy of basal ganglia disorders. Trends. Neurosc. 12:366–375.Google Scholar
  3. 3.
    Gale, K. 1988. Progression and generalization of seizure discharge: anatomical and neurochemical substrates. Epilepsia 29: Suppl. 2, 515–534.Google Scholar
  4. 4.
    Abarca, J., and Bustos, G. 1985. Release ofd-[3H]aspartic acid from the rat substantia nigra: effect of veratridine-evoked depolarization and cortical ablation. Neurochem. Int. 7:299–306.Google Scholar
  5. 5.
    Carter, C. J. 1980. Glutamatergic pathways from the medial prefrontal cortex to the anterior striatum, nucleus accumbens and substantia nigra. Br. J. Pharmacol. 70:50P.Google Scholar
  6. 6.
    Fiedler, J., and Bustos, G. 1991. Cortical ablation reduces veratridine evoked release of endogenous glutamate from superfused nigra slices. Neurosc. Lett. 22:96–98.Google Scholar
  7. 7.
    Fonnum, F., Soreide, A., Krale, I., Walker, J., and Walaas, I. 1981. Glutamate in cortical fibers. Adv. Biochem. Psychopharmacol 27: 29–42.Google Scholar
  8. 8.
    Kornhuber, J., Jin-Soo, K., Kornhuber, M. E., and Kornhuber, H. H. 1984. The corticonigral projection: reduced glutamate content in the substantia nigra following frontal cortex ablation in the rat. Brain Res. 322:124–126.Google Scholar
  9. 9.
    Bustos, G., Abarca, J., Fiedler, J., and Araneda, R. 1988. Neurochemistry of the substantia nigra: interrelations between excitatory amino acids, N-methyl-D-aspartate receptors and intrinsic neuronal systems. Arch. Biol. Med. Exp. 21:59–64.Google Scholar
  10. 10.
    Klockgether, T., and Turski, L. 1989. Excitatory amino acids and the basal ganglia: implications for the therapy of Parkinson's disease. Trends. Neurosci. 12:285–286.Google Scholar
  11. 11.
    Nakanishi, H., Kita, H., and Kitai, S. T. 1987. Intracellular study of substantia nigra pars reticulata neurons in an in vitro slice preparation: electrical membrane properties and response characteristics to subthalamic stimulation. Brain Res. 437:45–55.Google Scholar
  12. 12.
    Smith, Y., and Parent, A. 1988. Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity. Brain Res. 453:353–356.Google Scholar
  13. 13.
    Nieoullon, A., Cheramy, A., and Glowinski, J. 1978. Release of dopamine evoked by electrical stimulation of the motor and visual areas of the cerebral cortex in both caudate nuclei and in the substantia nigra of the rat. Brain. Res. 145:69–83.Google Scholar
  14. 14.
    Araneda, R., and Bustos, G. 1989. Modulation of dendritic release of dopamine by N-methyl-D-aspartate receptors in rat substantia nigra. J. Neurochem. 52:962–970.Google Scholar
  15. 15.
    Abarca, J., and Bustos, G. 1988. Modulation of excitatory amino acid release by endogenous dopamine and D1 receptors in substantia nigra. Arch. Biol. Med. Exp. 21:R-275.Google Scholar
  16. 16.
    Abarca, J., and Bustos, G. 1990. Depolarization evoked release of D-[3H] aspartate from slices of substantia nigra: effects of dopamine receptor ligands. Neurochem. Int. 16:253–261.Google Scholar
  17. 17.
    Cheramy, A., Leviel, U., and Glowinski, J. 1981. Dendritic release of dopamine in the substantia nigra. Nature 289:537–542.Google Scholar
  18. 18.
    Geffen, L. B., Jessell, T. M., Cuello, A. C., and Iversen, L. L. 1976. Release of dopamine from dendrites in rat substantia nigra. Nature 260:258–260.Google Scholar
  19. 19.
    Altar, C. A., and Hauser, K. 1987. Topography of substantia nigra innervation by D1 receptor-containing striatal neurons. Brain Res. 410:1–11.Google Scholar
  20. 20.
    Dubois, A., Savasta, M., Curet, O., and Scatton, B. 1986. Autoradiographic distribution of D2 dopamine receptors. Neuroscience 19:379–386.Google Scholar
  21. 21.
    Murrin, L. C., Gale, K., and Kuhar, M. J. 1979. Autoradiographic localization of neuroleptic and dopamine receptors in the caudateputamen and substantia nigra: effect of lesions. Eur. J. Pharmac. 60:229–235.Google Scholar
  22. 22.
    Quik, M., and Iversen, L. L. 1979. Regional study of3H-spiperone binding and the dopamine-sensitive adenylate cyclase in rat brain. Eur. J. Pharmacol. 56:323–330.Google Scholar
  23. 23.
    Abarca, J., and Bustos, G. 1991. Microdialysis as an experimental tool to studyin vivo chemical interactions between GLUergic and DAergic neurons in rat brain substantia nigra. Arch. Biol. Med. Exp. 24:R-122.Google Scholar
  24. 24.
    Abarca, J., and Bustos, G. 1992. Role of dopamine receptors and voltage-dependent Na+ channels on GLU and ASP release in rat substantia nigra. Abstr. XXXV Annu. Meeting Chilean Biolog. Soc., R-91.Google Scholar
  25. 25.
    Paxinos, G., and Watson, C. 1982. The Rat Brain in Stereotaxic Coordinates. Academic Press, Sydney.Google Scholar
  26. 26.
    Bradberry, Ch. W., and Roth, R. H. 1989. Cocaine increases extracellular dopamine in rat nucleus accumbens and ventral tegnental area as shown by in vivo microdialysis. Neurosc. Lett. 103: 97–102.Google Scholar
  27. 27.
    Bustos, G., Abarca, J., Forray, M. L., Gysling, K., Bradberry, Ch. V., and Roth, R. H. 1992. Regulation of excitatory amino acid release by N-methyl-D-aspartate receptors in rat striatum: in vivo microdialysis studies. Brain Res. 585:105–115.Google Scholar
  28. 28.
    Church, W. H., and Justice, J. B. 1987. Rapid sampling and determination of extracellular dopamine in vivo. Anal. Chem. 59: 712–716.Google Scholar
  29. 29.
    Lindroth, P., and Mopper, K. 1979. High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthalaldehyde. Anal. Chem. 51:1667–1674.Google Scholar
  30. 30.
    Lista, A., Abarca, J., Ramos, C., and Daniels, A. J. 1986. Rat striatal dopamine and tetrahydrobiopterin content following an intrastriatal injection of manganese chloride. Life Sci. 38:2121–2127.Google Scholar
  31. 31.
    Sibley, D. R., Leff, S. E., and Creese, I. 1982. Interactions of novel dopaminergic ligands with D-1 and D-2 dopamine receptors, Life Sci. 31:637–645.Google Scholar
  32. 32.
    Ioro, L. C., Barnett, A., Leitz, F. H., Houser, U. P., and Korduba, C. A. 1983. SCH-23390, a potential benzazepine antipsychotic with unique interactions of dopaminergic systems. J. Pharmac. Exp. Ther. 226:462–468.Google Scholar
  33. 33.
    O'Boyle, K. M., and Waddington, I. L. 1987. [3H]SCH-23390 binding to human putamen D-1 dopamine receptors: Stereochemical and Structure-affinity relationships among 1-Phenyl-1H-3-Benzazepine derivatives as a guide to D-1 receptor topography. J. Neurochem. 48:1039–1042.Google Scholar
  34. 34.
    Porceddu, M. L., Giorgi, O., Ongini, E., Mele, S., and Biggio, G. 1986. [3H]SCH-23390 binding sites in the rat substantia nigra: evidence for a presynaptic localization and innervation by dopamine. Life Sci. 39:321–328.Google Scholar
  35. 35.
    Quik, M., Emson, P. C., and Joyce, E. 1979. Dissociation between the presynaptic dopamine-sensitive adenylate cyclase and [3H]spiperone binding sites in the rat substantia nigra. Brain Res. 167:355–365.Google Scholar
  36. 36.
    Nagahama, S., Chen, Y. F., Lindheimer, M. D., and Oparil, S. 1986. Mechanism of the pressor action of LY-171555, a specific dopamine D2 receptor agonist, in the conscious rat. J. Pharmacol. Exp. Ther. 236:735–743.Google Scholar
  37. 37.
    Ruffolo, R. H., and Sharr, C. J. 1983. Relative potency of LY-171555 at dopamine-DA2 and histamine-H2 receptors. Eur. J. Pharmacol. 92:295–301.Google Scholar
  38. 38.
    Grace, A. A., and Bunney, B. S. 1983. Intracellular and extracellular electrophysiology of nigral dopamine neurons. Identification and characterization. Neuroscience 10:301–315.Google Scholar
  39. 39.
    Hollerman, J. R., and Grace, A. A. 1990. The effects of dopaminedepleting brain lesions on the electrophysiological activity of rat substantia nigra dopamine neurons. Brain Res. 533:203–212.Google Scholar
  40. 40.
    Weick, B. G., Engber, T. M., Susel, Z., Chase, T. N., and Walters, J. R. 1990. Responses of substantia nigra pars reticulata neurons to GABA and SKF-38393 in 6-hydroxydopamine-lesioned rats are differentially affected by continuous and intermittent levodopa administration. Brain Res. 523:16–22.Google Scholar
  41. 41.
    Paulsen, R. E., and Fonnum, F. 1989. Role of glial cells for the basal and Ca2+-dependent K+-evoked release of transmitter amino acids investigated by microdialysis. J. Neurochem. 52:1823–1829.Google Scholar
  42. 42.
    Nicholls, D. G. 1989. Release of glutamate, aspartate and gamma-aminobutyric acid from isolated nerve terminals. J. Neurochem. 52:331–341.Google Scholar
  43. 43.
    Wilkinson, R. J., and Nicholls, D. G. 1989. Compartmentation of glutamate and aspartate within cerebral cortical synaptosomes: evidence for a non-cytoplasmic origin for the calcium releasable pool of glutamate. Neurochem. Int. 15:191–197.Google Scholar
  44. 44.
    Morari, M., O'Connor, W. T., Ungerstedt, U., and Fuxe, K. 1993. N-methyl-D-aspartic acid differentially regulates extracellular dopamine, GABA and Glutamate levels in the dorsolateral neostriatum of the halothane-anesthetized rat: an in vivo microdialysis study. J. Neurochem. 60:1884–1893.Google Scholar
  45. 45.
    Aghajanian, G. K., and Bunney, B. S. 1977. Dopamine autoreceptors: pharmacological characterization by microiontophoretic single cell recording studies. Naunyn-Schmiedeberg's Arch. Pharmacol. 297:1–7.Google Scholar
  46. 46.
    Martres, M. P., Boothenet, M. L., Soles, N., Sokoloff, P., and Schwartz, J. C. 1985. Widespread distribution of brain dopamine receptors evidenced with [125I] iodosulpiride, a highly selective ligand. Science 228:752–755.Google Scholar
  47. 47.
    Weiner, D. M., Levey, A. I., Sunahara, R. K., Niznik, H. B., O'Dowd, B. F., Seeman, P., and Brann, M. R. 1991. D1 and D2 dopamine receptor mRNA in rat brain. Proc. Natl. Acad. Sci., U.S.A., 88:1859–1863.Google Scholar
  48. 48.
    Filloux, F. M., Wamsley, J. K., and Dawson, T. M. 1987. Presynaptic and postsynaptic D1 dopamine receptors in the nigrostriatal system of the rat brain: a quantitative autoradiographic study using the selective D1 antagonist [3H]SCH-23390. Brain Res. 408:205–209.Google Scholar
  49. 49.
    Strange, P. G. 1991. D1/D2 dopamine receptor interaction at the biochemical level. Trends. Pharmacol. Sci 12:48–49.Google Scholar
  50. 50.
    Waddington, J. W. 1986. Behavioural correlates of the action of selective D-1 dopamine receptor antagonists. Biochem. Pharmacol. 35:3661–3667.Google Scholar
  51. 51.
    Jacobson, I., and Hamberger, A. 1985. Kainic acid-induced changes of extracellular amino acid levels, evoked potentials and EEG activity in the rabbit olfactory bulb. Brain Res. 348:289–296.Google Scholar
  52. 52.
    Lehmann, A., Isaccsson, H., and Hamberger, A. 1983. Effects of in vivo administration of kainic acid on the extracellular amino acid pool in the rabbit hippocampus. J. Neurochem. 40:1314–1320.Google Scholar
  53. 53.
    Yamamoto, B. K., Davy, S. 1992. Dopaminergic modulation of glutamate release in striatum as measured by microdialysis. J. Neurochem. 58:1736–1742.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Jorge Abarca
    • 1
  • Katia Gysling
    • 1
  • Robert H. Roth
    • 2
  • Gonzalo Bustos
    • 1
  1. 1.Laboratory of Biochemical Pharmacology, Department of Cell and Molecular Biology, Faculty of Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Department of Pharmacology and PsychiatryYale University School of MedicineNew Haven

Personalised recommendations