Advertisement

Neurochemical Research

, Volume 17, Issue 5, pp 489–495 | Cite as

Preferential inhibition of acetylcholinesterase molecular forms in rat brain

  • Nobuo Ogane
  • Ezio Giacobini
  • Erik Messamore
Original Articles

Abstract

The effect of eight different acetylcholinesterase inhibitors (AChEIs) on the activity of acetylcholinesterase (AChE) molecular forms was investigated. Aqueous-soluble and detergent-soluble AChE molecular forms were separated from rat brain homogenate by sucrose density sedimentation. The bulk of soluble AChE corresponds to globular tetrameric (G4), and monomeric (G1) forms. Heptylphysostigmine (HEP) and diisopropylfluorophosphate were more selective for the G1 than for the G4 form in aqueous-soluble extract. Neostigmine showed slightly more selectivity for the G1 form both in aqueous- and detergent-soluble extracts. Other drugs such as physostigmine, echothiophate, BW284C51, tetrahydroaminoacridine, and metrifonate inhibited both aqueous- and detergent-soluble AChE molecular forms with similar potency. Inhibition of aqueous-soluble AChE by HEP was highly competitive with Triton X-100 in a gradient, indicating that HEP may bind to a detergent-sensitive non-catalytic site of AChE. These results suggest a differential sensitivity among AChE molecular forms to inhibition by drugs through an allosteric mechanism. The application of these properties in developing AChEIs for treatment of Alzheimer disease is considered.

Key Words

Acetylcholinesterase (AChE) molecular forms AChE inhibitors heptyl-physostigmine sucrose density gradient sedimentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Massouliè, J., and Bon, S. 1982. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Ann. Rev. Neurosci. 5:57–106.Google Scholar
  2. 2.
    Brimijoin, S. 1983. Molecular forms of acetylcholinesterase in brain, nerve and muscle: nature, localization and dynamics. Prog. Neurobiol. 21:291–322.Google Scholar
  3. 3.
    Rakonczay, Z. 1986. Mammalian brain acetylcholinesterase. Pages 319–360,in Neuromethods. Neurotransmitter enzymes, Vol. 5, Humana Press Inc., New Jersey.Google Scholar
  4. 4.
    Inestrosa, N. C., Reiness, C. G., Reichardt, L. F., and Hall, Z. W. 1981. Cellular localization of the molecular forms of acetylcholinesterase in rat pheochromocytoma PC12 cells treated with nerve growth factor. J. Neurosci. 1:1260–1267.Google Scholar
  5. 5.
    Di Giamberardino, L., and Couraud, J. Y. 1978. Rapid accumulation of high molecular weight acetylcholinesterase in transected sciatic nerve. Nature (London) 271:170–172.Google Scholar
  6. 6.
    Rieger, F., and Vigny, M. 1976. Solubilization and physicochemical characterization of rat brain acetylcholinesterase: development and maturation of its molecular forms. J. Neurochem. 27:121–129.Google Scholar
  7. 7.
    Vigny, M., Bon, S., Massouliè, J., and Leterrier, F. 1978. Active-site catalytic efficiency of acetylcholinesterase molecular forms in Electrophorus, Torpedo, rat and chicken. Eur. J. Biochem. 85:317–323.Google Scholar
  8. 8.
    Bon, S., and Massouliè, J. 1976. An active monomeric form of Electrophorus electricus acetylcholinesterase. FEBS Lett. 67:99–103.Google Scholar
  9. 9.
    Gentinetta, R., and Brodbeck, U. 1976. Differences in subunit activities in acetylcholinesterase as possible cause for apparent deviation from normal Michaelis-Menten kinetics. Biochem. Biophys. Acta. 438:437–448.Google Scholar
  10. 10.
    Inestrosa, N. C., Roberts, W. L., Marshall, T. L., and Rosenberry, T. L. 1986. Acetylcholinesterase from bovine caudate nucleus is attached to membranes by a novel subunit distinct from those of acetylcholinesterases in other tissues. J. Biol. Chem. 262:4441–4444.Google Scholar
  11. 11.
    Andres, C., Mourabit, M., Stutz, C., Mark, J., and Waksman, A. 1990. Are soluble and membrane-bound rat brain acetylcholinesterase different? Neurochem. Res. 15:1065–1072.Google Scholar
  12. 12.
    Skau, K. A. 1981. Ethopropazine inhibition of AChE molecular forms. Pharmacologist 23:224.Google Scholar
  13. 13.
    Skau, K. A. 1982. Differential pharmacology of acetylcholinesterase molecular forms. Pharmacologist 24:221.Google Scholar
  14. 14.
    Volpe, M. T., Bisso, G. M., and Michalek, H. 1990. In vivo and in vitro effects of diisopropylfluorophosphate and Paraxon on individual molecular forms of rat brain acetylcholinesterase. Neurochem. Res. 15:975–979.Google Scholar
  15. 15.
    Becker, R. E., and Giacobini, E. 1988. Mechanisms of cholinesterase inhibition in senile dementia of the Alzheimer type: clinical, pharmacological and therapeutic aspects. Drug Development. Res. 12:163–195.Google Scholar
  16. 16.
    Pomponi, M., Giacobini, E., and Brufani, M. 1990. Present state and future development of the therapy of Alzheimer disease. Aging 2:125–153.Google Scholar
  17. 17.
    Atack, J. R., Perry, E. K., Bonham, J. R., Perry, R. H., Tomlinson, B. E., Blessed, G., and Fairbairn, A. 1983. Molecular forms of acetylcholinesterase in senile dementia of Alzheimer type: selective loss of the intermediate (10 s) form. Neurosci. Lett. 40:199–204.Google Scholar
  18. 18.
    Fishman, E. B., Siek, G. C., MacCallum, R. D., Bird, E. D., Volicer, L., and Marquis, J. K. 1986. Distribution of the molecular forms of acetylcholinesterase in human brain: alterations in dementia of the Alzheimer type. Ann. Neurol. 19:246–252.Google Scholar
  19. 19.
    Younkin, S. G., Goodridge, B., Katz, J., Lockett, G., Nafziger, D., Usiak, M. F., and Younkin, L. H. 1986. Molecular forms of acetylcholinesterases in Alzheimer's disease. Federation Proc. 45:2982–2988.Google Scholar
  20. 20.
    Siek, G. C., Katz, L. S., Fishman, E. B., Koros, T. S., and Marquis, J. K. 1990. Molecular forms of acetylcholinesterase in subcortical areas of normal and Alzheimer disease brain. Biol. Psychiatry 27:573–580.Google Scholar
  21. 21.
    Nakano, S., Kato, T., Nakamura, S., and Kameyama, M. 1986. Acetylcholinesterase activity in cerebrospinal fluid of patients with Alzheimer's disease and senile dementia. J. Neurol. Sci. 75:213–223.Google Scholar
  22. 22.
    Bisso, G. M., Diana, G., Fortuna, S., Meneguz, A., and Michalek, H. 1988. Change in the distribution of acetylcholinesterase molecular forms in frontoparietal cortex of the rat following nucleus basalis lesion with kainic acid. Brain Res. 449:391–394.Google Scholar
  23. 23.
    Brufani, M., Marta, M., and Pomponi, M. 1986. Anticholinesterase activity of a new carbamate, heptyl-physostigmine (C8) in view of its use in patients with Alzheimer-type dementia. Eur. J. Biochem. 157:115–120.Google Scholar
  24. 24.
    DeSarno, P., Pomponi, M., Giacobini, E., Tang, X. C., and Williams, E. 1989. The effect of heptyl-physostigmine, a new cholinesterase inhibitor, on the central cholinergic system of the rat. Neurochem. Res. 14:971–977.Google Scholar
  25. 25.
    Johnson, C. D., and Russell, R. L. 1975. A rapid, simple radiometric assay for cholinesterase, suitable for multiple determinations. Analyt. Biochem. 64:229–238.Google Scholar
  26. 26.
    Grassi, J., Vigny, M., and Massouliè, J. 1982. Molecular forms of acetylcholinesterase in bovine caudate nucleus and superior cervical ganglion: solubility properties and hydrophobic character. J. Neurochem. 38:457–469.Google Scholar
  27. 27.
    Lazer, M., and Vigny, M. 1980. Modulation of the distribution of acetylcholinesterase molecular forms in a murine neuroblastoma x sympathetic ganglion cell hybrid cell line. J. Neurochem. 35:1067–1079.Google Scholar
  28. 28.
    Taylor, P. B., Rieger, F., Shelanski, M. L., and Greene, L. A. 1981. Cellular localization of the multiple molecular forms of acetylcholinesterase in cultured neuronal cells. J. Biol. Chem. 256:3827–3830.Google Scholar
  29. 29.
    Ferrand, C., Clarous, D., Delteil, C., and Weber, M. J. 1986. Cellular localization of the molecular forms of acetylcholinesterase in primary cultures of rat sympathetic neurons and analysis of the secreted enzyme. J. Neurochem. 46:349–358.Google Scholar
  30. 30.
    Gisinger, V., and Vigny, M. 1977. A specific form of acetylcho-linesterase is secreted by rat sympathetic ganglia. FEBS Lett. 84:253–256.Google Scholar
  31. 31.
    Changeux, J. P. 1966. Responses of acetylcholinesterase from Torpedo marmorata to salts and curarizing drugs. Mol. Pharmacol. 2:369–392.Google Scholar
  32. 32.
    Zonetta, J. P., Raconczay, Z., Reeber, A., and Vincedon, G. 1981. Antibodies against the membrane-bound acetylcholinesterase from adult rat brain. FEBS Lett. 129:293–296.Google Scholar
  33. 33.
    Sørensen, K., Gentinetta, R., and Brodbeck, U. 1982. An amphiphile-dependent form of human brain caudate nucleus acetylcholinesterase: purification and properties. J. Neurochem. 39:1050–1060.Google Scholar
  34. 34.
    Roufogalis, B. D., and Quist, E. E. 1971. Relative binding sites of pharmacologically active ligand on bovine erythrocyte acetylcholinesterase. Mol. Pharmacol. 8:41–49.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Nobuo Ogane
    • 1
  • Ezio Giacobini
    • 1
  • Erik Messamore
    • 1
  1. 1.Department of PharmacologySouthern Illinois University School of MedicineSpringfield

Personalised recommendations