Neurochemical Research

, Volume 20, Issue 7, pp 793–802 | Cite as

Changes in organic solutes, volume, energy state, and metabolism associated with osmotic stress in a glial cell line: A multinuclear NMR study

  • Ulrich Flögel
  • Thoralf Niendorf
  • Nathalie Serkowa
  • Annette Brand
  • Joachim Henke
  • Dieter Leibfritz
Original Articles


Diffusion-weighted in vivo1H-NMR spectroscopy of F98 glioma cells embedded in basement membrane gel threads showed that the initial cell swelling to about 180% of the original volume induced under hypotonic stress was followed by a regulatory volume decrease to nearly 100% of the control volume in Dulbecco's modified Eagle's medium (DMEM) but only to 130% in Krebs-Henseleit buffer (KHB, containing only glucose as a substrate) after 7 h. The initial cell shrinkage to approx. 70% induced by the hypertonic stress was compensated by a regulatory volume increase which after 7 h reached almost 100% of the control value in KHB and 75% in DMEM.1H-,13C-and31P-NMR spectroscopy of perchloric acid extracts showed that these volume regulatory processes were accompanied by pronounced changes in the content of organic osmolytes. Adaptation of intra- to extracellular osmolarity was preferentially mediated by a decrease in the cytosolic taurine level under hypotonic stress and by an intracellular accumulation of amino acids under hypertonic stress. If these solutes were not available in sufficient quantities (as in KHB), the osmolarity of the cytosol was increasingly modified by biosynthesis of products and intermediates of essential metabolic pathways, such as alanine, glutamate and glycerophosphocholine in addition to ethanolamine. The cellular nucleoside triphosphate level measured by in vivo31P-NMR spectroscopy indicated that the energy state of the cells was more easily sustained under hypotonic than hypertonic conditions.

Key Words

Glial cells osmotic stress volume regulation organic solutes metabolism in vivo NMR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chamberlain, M. E., and Strange, K. 1989. Anisosmotic cell volume regulation: a comparative view. Am. J. Physiol. 257:C159-C173.PubMedGoogle Scholar
  2. 2.
    Hoffmann, E. K., and Simonson, L. O. 1989. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol. Rev. 69:315–382.PubMedGoogle Scholar
  3. 3.
    Lang, F., Ritter, M., Völkl, H., and Häussinger, D. 1993. Cell volume regulatory mechanims—an overview, Pages 1–32,in Lang, F., and Häussinger, D. (eds.), Adv. Comp. Environ. Physiol. Vol. 14, Springer-Verlag, Berlin.Google Scholar
  4. 4.
    Syková, E. 1992. Ionic and volume changes in the microenvironment of nerve and receptor cells. Progr. Sens. Physiol. 13:1–167.Google Scholar
  5. 5.
    Cserr, H. F., and Patlak, C. S. 1991. Regulation of brain volume under isosmotic and anisosmotic conditions, Pages 61–80,in Gilles, R., Hoffmann, E. K., and Bolis, L. (eds.), Adv. Comp. Environ. Physiol. Vol. 9. Springer-Verlag, Berlin.Google Scholar
  6. 6.
    Kimelberg, H. K., O'Connor, E. R., and Kettenmann, H. 1993. Effects of swelling on glial cell function, Pages 157–186,in Lang, F. and Häussinger, D. (eds.), Adv. Comp. Environ. Physiol. Vol. 14, Springer-Verlag, Berlin.Google Scholar
  7. 7.
    Pollock, A. S., and Arieff, A. I. 1980: Abnormalities of cell volume regulation and their functional consequences. Am. J. Physiol. 239:F195-F205.PubMedGoogle Scholar
  8. 8.
    Flynn, C. J., Farooqui, A. A., and Horrocks, L. A. 1994. Ischemia and hypoxia, Pages 783–795,in Siegel, G. J. Agranoff, B. W., Albers, R. W., and Molinoff, P. B. (eds.), Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, 5th Ed., Raven Press, New York.Google Scholar
  9. 9.
    Jakubovicz, D. E., Grinstein, S., and Klip, A. 1987. Cell swelling following recovery from acidification in C6 glioma cells: an in vitro model of post-ischemic brain edema. Brain Res. 435:138–146.PubMedGoogle Scholar
  10. 10.
    Walz, W., Klimaszweski, A., and Paterson, I. A. 1993. Glial swelling in ischemia: A hypothesis. Dev. Neurosci. 15:216–225.PubMedGoogle Scholar
  11. 11.
    Kinne, R. K. H. 1993. The role of organic osmolytes in osmoregulation: from bacteria to mammals. J. Exp. Zool. 265:346–355.PubMedGoogle Scholar
  12. 12.
    Law, R. O., and Burg, M. B. 1991. The role of organic osmolytes in the regulation of mammalian cell volume, Pages 189–225,in Gilles, R., Hoffmann, E. K., and Bolis, L. (eds.), Adv. Comp. Environ. Physiol. Vol. 9. Springer-Verlag, Berlin.Google Scholar
  13. 13.
    McCarthy, N. A., and O'Neil, R. G. 1992. Calcium signaling in cell volume regulation. Physiol. Rev. 72:1037–1061.PubMedGoogle Scholar
  14. 14.
    Burg, M. B. 1994. Molecular basis for osmoregulation of organic osmolytes in renal medullary cells. J. Exp. Zool. 268:171–175.PubMedGoogle Scholar
  15. 15.
    Heilig, C. W., Brenner, R. M., Yu, A. S. L., Kone, B. C., and Gullans, S. R. 1990. Modulation of osmolytes in MDCK cells by solutes, inhibitors, and vasopressin. Am. J. Physiol. 259:F653–659.PubMedGoogle Scholar
  16. 16.
    Lohr, J. W., and Grantham, J. J. 1991. Inorganic ions and volume regulation in kidney tubules under anisosmotic conditions, Pages 61–80,in Gilles, R., Hoffmann, E. K., and Bolis, L. (eds.), Adv. Comp. Environ. Physiol. Vol. 9. Springer-Verlag, Berlin.Google Scholar
  17. 17.
    Zablocki, K., Miller, S. P. F., Garcia-Perez, A., and Burg, M. B. 1991. Accumulation of glycerophosphocholine (GPC) by renal cells: Osmotic regulation of GPC: choline phosphodiesterase. Proc. Natl. Acad. Sci. U.S.A. 88:7820–7824.PubMedGoogle Scholar
  18. 18.
    Beetsch, J. W., and Olson, J. E. 1993. Taurine transport in rat astrocytes adapted to hyperosmotic stress. Brain Res. 613:10–15.PubMedGoogle Scholar
  19. 19.
    Kimelberg, H. K. 1991. Swelling and volume control in brain astroglial cells, Pages 81–117,in Gilles, R., Hoffmann, E. K., and Bolis, L. (eds.), Adv. Comp. Environ. Physiol. Vol. 9. Springer-Verlag, Berlin.Google Scholar
  20. 20.
    Law, R. O. 1994. Regulation of mammalian brain cell volume. J. Exp. Zool. 268:90–96.PubMedGoogle Scholar
  21. 21.
    Strange, K., and Morrison, R. 1992. Volume regulation during recovery from chronic hypertonicity in brain glial cells. Am. J. Physiol. 263:C412-C419.PubMedGoogle Scholar
  22. 22.
    Heilig, C. W., Stromski, M. E., Blumenfeld, J. D., Lee, J. P., and Gullans, S. R. 1989. Characterization of the major brain osmolytes that accumulate in salt-loaded rats. Am. J. Physiol. 257:F1108-F1116.PubMedGoogle Scholar
  23. 23.
    Lien, Y. H. H., Shapiro, J. I., and Chan, L. 1990. Effects of hypernatremia on organic brain osmoles. J. Clin. Invest. 85:1427–1435.PubMedGoogle Scholar
  24. 24.
    Law, R. O. 1994. Taurine efflux and the regulation of cell volume in incubated slices of rat cerebral cortex. Biochim. Biophys. Acta 1221:21–28.PubMedGoogle Scholar
  25. 25.
    Pasantes-Morales, H., and Schousboe, A. 1988. Volume regulation in astrocytes: a role for taurine as osmoeffector. J. Neurosci. Res. 20:505–509.Google Scholar
  26. 26.
    Solis, J. M., Herranz, A. S., Herreras, O., Lerma, J., and Martin del Rio, M. 1988. Does taurine act as an osmoregulatory substance in rat brain? Neurosci. Lett. 91:53–58.PubMedGoogle Scholar
  27. 27.
    Wade, J. V., Olson, J. P., Samson, F. E., Nelson, S. R., and Pazdernik, T. L. 1988. A possible role for taurine in osmoregulation within the brain. J. Neurochem. 51:740–745.PubMedGoogle Scholar
  28. 28.
    Isaacks, R. E., Bender, A. S., Kim, C. Y., Prieto, N. M., and Norenberg, M. D. 1994. Osmotic regulation of myo-inositol uptake in primary astrocyte cultures. Neurochem. Res. 19:331–338.PubMedGoogle Scholar
  29. 29.
    Strange, K., Morrsion, R., Shrode, L., and Putnam, R. 1993. Mechanism and regulation of swelling-activated inositol efflux in brain glial cells. Am. J. Physiol. 265:C244-C256.PubMedGoogle Scholar
  30. 30.
    Verbalis, J. G., and Gullans, S. R. 1991. Hyponatremia causes large sustained reductions in brain content of multiple organic osmolytes in rats. Brain Res. 567:274–282.PubMedGoogle Scholar
  31. 31.
    Fishman, R. A., Reiner, M., and Chan, P. H. 1977. Metabolic changes associated with iso-osmotic regulation in brain cortex slices. J. Neurochem. 28:1061–1067.PubMedGoogle Scholar
  32. 32.
    Häussinger, D., Gerok, W., and Lang, F., 1993. Cell volume and hepatic metabolism, Pages 33–66,in Lang, F., and Häussinger, D., (eds.), Adv. Comp. Environ. Physiol. Vol. 14, Springer-Verlag, Berlin.Google Scholar
  33. 33.
    Olson, J. E., Evers, J. A., and Holtzman, D. 1992. Astrocyte volume regulation and ATP and phosphocreatine concentrations after exposure to salicylate, ammonium, and fatty acids. Metab. Brain Dis. 7:183–196.PubMedGoogle Scholar
  34. 34.
    Ko, L., Koestner, A., and Wechsler, W. 1980. Morphogical characterization of nitrosurea-induced glioma cell lines and clones. Acta Neuropathol. 51:23–31.PubMedGoogle Scholar
  35. 35.
    Ko, L., Koestner, A., and Wechsler, W. 1980. Characterization of cell cycle and biological parameters of transplantable glioma cell lines and clones. Acta Neuropathol. 51:107–111.PubMedGoogle Scholar
  36. 36.
    Daly, P. F., Lyon, R. C., Straka, E. J., and Cohen, J. S. 1988.31P-NMR of human cancer cells proliferating in a basement membrane gel. FASEB J. 2:2596–2604.PubMedGoogle Scholar
  37. 37.
    Goa, J. 1953. A micro biuret method for protein determination. Scand. J. Clin. Lab. Invest. 5:218–222.PubMedGoogle Scholar
  38. 38.
    Shaka, A. J., Keeler, J., Frenkiel, T., and Freeman, R. 1983. An improved sequence for broadband decoupling: WALTZ-16. J. Magn. Reson. 52:335–338.Google Scholar
  39. 39.
    Gillies, R. J., Alger, R. J., den Hollander, J. A., and Shulman, R. G. 1982. Intracellular pH measured by NMR: methods and results, Pages 79–104,in Nuccitelli, R., and Deamer, D. W. (eds.), Intracellular pH: its Measurement, Regulation, and Utilization in Cellular Functions, Alan R. Liss, Inc., New York.Google Scholar
  40. 40.
    Fabry, M. E., and San George, R. C., 1983. Effect of magnetic susceptibility on nuclear magnetic resonance signals arising from red cells: a warning. Biochemistry 22:4119–4125.PubMedGoogle Scholar
  41. 41.
    Neeman, M., Jarrett, K. A., Sillerud, L. O., and Freyer, J. P. 1991. Self-diffusion of water in multicellular spheroids measured by magnetic resonance microimaging. Canc. Res. 51:4072–4079.Google Scholar
  42. 42.
    van Zijl, P. C. M., Monnen, C. T. W., Faustino, P., Pekar, J., Kaplan, O., and Cohen, J. S. 1991. Complete separation of intracellular and extracellular information in NMR spectra of perfused cells by diffusion-weighted spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 88:3228–3232.PubMedGoogle Scholar
  43. 43.
    Niendorf, T., Flögel, U., Norris, D. G., and Leibfritz, D. 1993. Intracellular water diffusion in glioma and neuroblastoma cells, Page 600,in Book of Abstracts, 12th Annual Meeting, Society of Magnetic Resonance, New York.Google Scholar
  44. 44.
    Stejskal, E. O., and Tanner, J. E. 1988. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42:288–292.Google Scholar
  45. 45.
    Halliday, K. R., Fenoglio-Preiser, C., and Sillerud, L. O. 1988. Differentiation of human tumors from nonmalignant tissue by natural-abundance13C-NMR spectroscopy. Magn. Reson. Med. 7: 384–411.PubMedGoogle Scholar
  46. 46.
    Hamilton, J. A., and Morisett, J. D. 1986. Nuclear magnetic resonance studies of lipoproteins. Methods Enzymol. 128:472–515.PubMedGoogle Scholar
  47. 47.
    Ribeiro, A. A., and Dennis, E. A. 1976.13C nuclear magnetic resonance relaxation studies on the structure of mixed micelles of the nonionic surfactant Triton X-100 and phospholipids. J. Colloid Interface Sci. 55:94–101.Google Scholar
  48. 48.
    Pasantes-Morales, H., Alavez, S., Olea, R. S., and Morán, J. 1993. Contribution of organic and inorganic osmolytes to volume regulation in rat brain cells in culture. Neurochem. Res. 18:445–452.PubMedGoogle Scholar
  49. 49.
    Lien, Y. H. H., Zhou, H. Z., Job, C., Barry, J. A., and Gillies, R. J. 1992. In vivo NMR study of early cellular responses to hyperosmotic shock in cultured glioma cells. Biochimie 74:931–939.PubMedGoogle Scholar
  50. 50.
    Natke, E. 1990. Cell volume regulation of rabbit cortical collecting tubule in anisotonic media. Am. J. Physiol. 258:F1657-F1665.PubMedGoogle Scholar
  51. 51.
    Rome, L., Grantham, J., Savin, V., Lohr, J., and Lechene, C. 1989. Proximal tubule volume regulation in hyperosmotic media: intracellular K+, Na+, and Cl. Am. J. Physiol. 257:C1093-C1100.PubMedGoogle Scholar
  52. 52.
    Tyler, B. C., and Ribolow, H. 1994. Glycerol phosphorylcholine (GPC) and serine ethanolamine phosphodiester (SEP): evolutionary mirrored metabolites and their potential metabolic roles. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 108:11–20.Google Scholar
  53. 53.
    Lang, F., Busch, G., Völkl, H., and Häussinger, D. 1994. Lysosomal pH: a link between cell volume and metabolism. Biochem. Soc. Trans. 22:502–505.PubMedGoogle Scholar
  54. 54.
    Meijer, A. J., Gustafson, L. A., Luiken, J. J. F. P., Blommaart, P. J. E., Caro, H. P., van Woerkom, G. M., Spronk, C., and Boon, L. 1993. Cell swelling and the sensitivity of autophagic proteolysis to inhibition by amino acids in isolated rat hepatocytes. Eur. J. Biochem. 215:449–454.PubMedGoogle Scholar
  55. 55.
    Bauernschmitt, H. G., and Kinne, R. K. H. 1993. Metabolism of the ‘organic osmolyte’ glycerophosphocholine in isolated rat inner medullary collecting duct cells. II. Regulation by extracellular osmolality. Biochim. Biophys. Acta 1150:25–34.PubMedGoogle Scholar
  56. 56.
    Cala, P., and Grinstein, S. 1988. Coupling between Na+/H+ and Cl/HCO3 exchange in pH and volume regulation; Pages 201–208,in Grinstein, S. (ed.), Na+/H+ Exchange, CRC Press, Boca Raton.Google Scholar
  57. 57.
    Lien, Y. H. H., Zhou, H. Z., Lai, L. W., Job, C., and Gillies, R. J. 1993. NMR study of regulatory volume increase in cultured glioma cells: role of Na+/H+-antiporter, Page 1013,in Book of Abstracts, 12th Annual Meeting, Society of Magnetic Resonance, New York.Google Scholar
  58. 58.
    Parker, C. 1988. Na+/H+ exchange and volume regulation in nonepithelial cells, Pages 179–200in Grinstein S. (ed.), Na+/H+ exchange, CRC Press, Boca Raton.Google Scholar
  59. 59.
    Munsch, T., and Deitmer, J. W. 1994. Sodium-bicarbonate cotransport current in identified leech glial cells. J. Physiol. (London) 474:43–53.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Ulrich Flögel
    • 1
  • Thoralf Niendorf
    • 1
  • Nathalie Serkowa
    • 1
  • Annette Brand
    • 1
  • Joachim Henke
    • 1
  • Dieter Leibfritz
    • 1
  1. 1.Institut für Organische ChemieUniversität BremenBremenGermany

Personalised recommendations