Siberian Mathematical Journal

, Volume 29, Issue 3, pp 427–441 | Cite as

Integral geometry of tensor fields on a manifold of negative curvature

  • L. N. Pestov
  • V. A. Sharafutdinov
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    R. G. Mukhometov, “Reconstruction of an anisotropic Riemannian metric in an n-dimensional domain,” Novosibirsk, 1978 (Preprint, Akad. Nauk SSSR, Sib. Otd. Vychisl. Tsentr; 136).Google Scholar
  2. 2.
    I. N. Bernshtein and M. L. Gerver, “A problem of integral geometry for a family of geodesics and an inverse seismic problem,” Dokl. Akad. Nauk SSSR,243, No. 2, 302–305 (1978).Google Scholar
  3. 3.
    Yu. E. Anikonov and V. G. Romanov, “Unique determination of a first order form by its integrals over geodesics,” in: Improper Mathematical Problems and Problems of Geophysics [in Russian], Vychisl. Tsentr, Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1979), pp. 22–27.Google Scholar
  4. 4.
    V. A. Sharafutdinov, “A problem of integral geometry for tensor fields and the St.-Venant equation,” Sib. Mat. Zh.,24, No. 6, 176–187 (1983).Google Scholar
  5. 5.
    V. A. Sharafutdinov, “A problem of integral geometry for tensor fields on Euclidean space,” in: Methods of Solution of Improper Problems and Problems of Geophysics [in Russian], Vych. Tsentr, Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1984), pp. 135–148.Google Scholar
  6. 6.
    V. A. Sharafutdinov, “A problem of integral geometry for generalized tensor fields on Rn,” in: Methods of Study of Nonclassical Problems of Mathematical Physics [in Russian], Vych. Tsentr. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1985), pp. 122–131.Google Scholar
  7. 7.
    L. P. Eisenhart, Riemannian Geometry [Russian translation], IL, Moscow (1948).Google Scholar
  8. 8.
    V. A. Sharafutdinov, “Symmetric tensor fields on a Riemannian manifold,” Novosibirsk, 1984 (Preprint, Akad. Nauk SSSR, Sib. Otd., Vychisl. Tsentr; 539).Google Scholar
  9. 9.
    R. Palais, Seminar on the Atiyah-Singer Index Theoem [Russian translation], Mir, Moscow (1970).Google Scholar
  10. 10.
    L. R. Volevich, “Solvability of boundary problems for general elliptic systems,” Mat. Sb.,68, No. 3, 373–416 (1965).Google Scholar
  11. 11.
    J. Milnor, Morse Theory [Russian translation], Mir, Moscow (1965).Google Scholar
  12. 12.
    C. Godbillon, Differential Geometry and Analytic Mechanics [Russian translation], Mir, Moscow (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • L. N. Pestov
  • V. A. Sharafutdinov

There are no affiliations available

Personalised recommendations