Siberian Mathematical Journal

, Volume 24, Issue 5, pp 659–671 | Cite as

Upper and lower estimates for the dimension of attractors of partial differential evolution equations

  • A. V. Babin
  • M. I. Vishik


Evolution Equation Differential Evolution Lower Estimate Differential Evolution Equation Partial Differential Evolution Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. L. Sobolev, Applications of Functional Analysis in Mathematical Physics, Amer. Math. Soc. (1969).Google Scholar
  2. 2.
    Yu. S. Il'yashenko, “Weakly contracting systems and attractors of Galerkin approximations of the Navier-Stokes equation,” Usp. Mat. Nauk,36, No. 3, 243–244 (1981).Google Scholar
  3. 3.
    A. V. Babin and M. I. Vishik, “Attractors of a Navier-Stokes system and parabolic equations and an estimate of their dimension,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,115, 3–15 (1982).Google Scholar
  4. 4.
    O. A. Ladyzhenskaya, “Finite-dimensionality of bounded invariant sets for a Navier-Stokes system and other dissipative systems,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,115, 137–155 (1982).Google Scholar
  5. 5.
    J. C. Wells, “Invariant manifolds of nonlinear operators,” Pac. J. Math.,62, No. 1, 285–293 (1976).Google Scholar
  6. 6.
    M. I. Vishik, “Solvability of boundary problems for quasilinear parabolic equations of higher order,” Mat. Sb.,59, 289–325 (1962).Google Scholar
  7. 7.
    J. L. Lions, Some Methods of Solving Nonlinear Boundary Problems [Russian translation], Mir, Moscow (1981).Google Scholar
  8. 8.
    J. E. Marsden and M. McCracken, The Hopf Bifurcation and Its Applications, Springer-Verlag (1976).Google Scholar
  9. 9.
    O. A. Ladyzhenskaya, Mathematical Theory of Viscous Incompressible Flow, Gordan and Breach (1969).Google Scholar
  10. 10.
    C. Foias and R. Temam, “Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations,” J. Math. Pures Appl.,58, No. 3, 339–368 (1979).Google Scholar
  11. 11.
    L. D. Meshalkin and Ya. G. Sinai, “Investigation of stability of a stationary solution of a system of planar motions of an incompressible viscous fluid,” Prikl. Mat. Mekh.,25, No. 6, 1140–1143 (1961).Google Scholar
  12. 12.
    V. I. Yudovich, “Instability of parallel flows of a viscous incompressible fluid with respect to spatially periodic perturbations,” in: Numerical Methods for Solving Problems of Mathematical Physics [in Russian], Nauka, Moscow (1966), pp. 242–249.Google Scholar
  13. 13.
    O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc. (1968).Google Scholar
  14. 14.
    A. I. Vol'pert and A. N. Ivanova, “Spatially inhomogeneous solutions of nonlinear diffusion equations,” Chernogolovka (1981) (Preprint, Institute of Chemical Physics AN SSSR).Google Scholar
  15. 15.
    A. V. Babin and M. I. Vishik, “Attractors of quasilinear parabolic equation,” Dokl. Akad. Nauk SSSR,254, No. 4, 780–784 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • A. V. Babin
  • M. I. Vishik

There are no affiliations available

Personalised recommendations