Skip to main content
Log in

A role for calcium/calmodulin kinase(s) in the regulation of GABA exocytosis

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A possible role for protein kinases in the regulation of GABA exocytosis in nerve endings was investigated. The effect on the release of the radioactive neurotransmitter ([3H]GABA) from mouse brain synaptosomes of several protein kinase inhibitors was estimated after treatment with 37 mM K+ in the absence of external Na+, a condition under which [3H]GABA release is completely Ca2+ dependent. Among the inhibitors one group inhibit the kinases by binding to the catalytic site (i.e. staurosporine and H7) and others (TFP, sphingosine and W7) act on the regulatory site of protein kinases. The compounds of the second group, which are reported to inhibit calmodulin dependent events and the increase in cytosolic Ca2+ (Ca i ) induced by high K+ depolarization, were the most efficient inhibitors of [3H]GABA release. The selective inhibitor of CaMPK II, KN-62, also markedly diminished [3H]GABA release as well as the increase in Ca i induced by high K+. The kinase inhibitors from the first group that are unable to diminish the increase in Ca i induced by high K+ were also less efficient inhibitors of [3H]GABA release even at high concentrations. The present results indicate that at the doses tested all the drugs inhibit to some extent the release of the Ca2+ dependent fraction of [3H]GABA perhaps by inhibiting a CaMPK II mediated phosphorylation step triggered by depolarization and facilitated by the elevation of Ca i . In addition, the second group of antagonists and KN-62 inhibit the elevation of Ca i to high K+ thus exhibiting a higher efficiency on [3H]GABA release than the first group of antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sihra, T. S., and Nicholls, D. G. 1987. 4-Aminobutyrate can be released exocytotically from guinea-pig cerebral cortical synaptosomes. J. Neurochem. 49:261–267.

    PubMed  Google Scholar 

  2. Sitges, M., Chiu, L. M., and González, L. 1993. Vesicular and carrier-mediated depolarization-induced release of H-GABA: Inhibition by verapamil and amiloride. Neurochem. Res. 18:1081–1087.

    PubMed  Google Scholar 

  3. Wang, J. K. T., Walaas, S. I., and Greengard, P. 1988. Protein phosphorylation in nerve terminals: Comparison of calcium/calmodulin-dependent and calcium/diacylglycerol-dependent systems. J. Neurosci. 8:281–288.

    PubMed  Google Scholar 

  4. Dunkley, P. R., Baker, C. M., and Robinson, P. J. 1986. Depolarization-dependent protein phosphorylation in rat cortical synaptosomes: Characterization of active protein kinases by phosphopeptide analysis of substrates. J. Neurochem. 46:1692–1703.

    PubMed  Google Scholar 

  5. Dunkley, P. R. 1992. Autophosphorylation of neuronal calcium/calmodulin-stimulated protein kinase II. Mol. Neurobiol. 5:179–202.

    Google Scholar 

  6. Dekker, L. V., De Graan, P. N. E., De Wit, M., Hens, J. J. H., and Gispen, W. H. 1990. Depolarization-induced phosphorylation of the protein kinase C substrate B-50 (GAP-43) in rat cortical synaptosomes. J. Neurochem. 54:1645–1652.

    PubMed  Google Scholar 

  7. Robinson, P. J. 1992. Potencies of protein kinase C inhibitors are dependent on the activators used to stimulate the enzyme. Biochem. Pharmacol. 44:1325–1334.

    PubMed  Google Scholar 

  8. Nichols, R. A., Chilcote, T. J., Czernik, A. J., and Greengard, P. 1992. Synapsin I regulates glutamate release from rat brain synaptosomes. J. Neurochem. 58:783–785.

    PubMed  Google Scholar 

  9. Dekker, L. V., De Graan, P. N. E., Spierenburg, H., De Wit, M., Versteeg, D. H. G., and Gispen, W. H. 1990. Evidence for a relationship between B-50 (GAP-43) and [H]noradrenaline release in rat brain synaptosomes. Europ. J. Pharmacol. 188:113–122.

    Google Scholar 

  10. De Graan, P. N. E., and Gispen, W. H. 1993. The role of B-50/GAP-43 in transmitter release: studies with permeated synaptosomes. Biochem. Soc. Trans. 21:103–107.

    Google Scholar 

  11. Massom, L., Lee, H., and Jarrett, H. W. 1990. Trifluoperazine binding to porcine brain calmodulin and skeletal muscle troponin C. Biochemistry 29:671–681.

    PubMed  Google Scholar 

  12. Hidaka, H., Yamaki, T., Naka, M., Tanaka, T., Hayashi, H., and Kobayashi, R. 1980. Calcium-regulated modulator protein interacting agents inhibit smooth muscle calcium-stimulated protein kinase and ATPase. Mol. Pharmacol. 17:66–72.

    PubMed  Google Scholar 

  13. Hidaka, H., Sasaki, Y., Tanaka, T., Endo, T., Ohno, S., Fujii, Y., and Nagata, T. 1981. N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc. Natl. Acad. Sci. USA 78:4354–4357.

    PubMed  Google Scholar 

  14. Jefferson, A. B., and Schulman, H. 1988. Sphingosine inhibits calmodulin-dependent enzymes. J. Biol. Chem. 263:15241–15224.

    PubMed  Google Scholar 

  15. Sitges, M., and Talamo, B. R. 1993. Sphingosine, W-7 and trifluoperazine inhibit the elevation in the cytosolic calcium induced by high K+ depolarization in synaptosomes. J. Neurochem. 61: 443–450.

    PubMed  Google Scholar 

  16. Nichols, R. A., Sihra, T. S., Czernik, A. J., Nairn, A. C., and Greengard, P. 1990. Calcium/calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes. Nature 343:647–651.

    PubMed  Google Scholar 

  17. Hidaka, H., and Kobayashi, R. 1992. Pharmacology of protein kinase inhibitors. Annu. Rev. Pharmacol. Toxicol. 32:377–397.

    PubMed  Google Scholar 

  18. Hajós, F. 1975. An improved method for the preparation of synaptosomal fractions in high purity. Brain Res. 136:387–392.

    Google Scholar 

  19. Sitges, M. 1989. Characterization of the effect of monensin on α-amino-n-butyric acid release from isolated nerve terminals. J. Neurochem. 53:442–447.

    PubMed  Google Scholar 

  20. Tapia, R., and Sitges, M. 1982. Effect of 4-aminopyridine on transmitter release in synaptosomes. Brain Res. 250:291–299.

    PubMed  Google Scholar 

  21. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. 1985. A new generation of Ca indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450.

    PubMed  Google Scholar 

  22. Ichikawa, M., Urayama, M., and Matsumoto, G. 1991. Antical-modulin drugs block the sodium gating current of squid giant axons. J. Membrane Biol. 120:211–222.

    Google Scholar 

  23. Tibbs, G. R., Barrie, A. P., Van Mieghem, F. J. E., McMahon, H. T., and Nicholls, D. G. 1989. Repetitive action potentials in isolated nerve terminals in the presence of 4-aminopyridine: Effects on cytosolic free Ca and glutamate release. J. Neurochem. 53: 1693–1699.

    PubMed  Google Scholar 

  24. Robinson, P. J., and Dunkley, P. R. 1985. Depolarization-dependent protein phosphorylation and dephosphorylation in rat cortical synaptosomes is modulated by calcium. J. Neurochem. 44:338–348.

    PubMed  Google Scholar 

  25. Schatzmann, R. C., Wise, B. C., and Kuo, J. F. 1981. Phospholipid-sensitive calcium-dependent protein kinase: inhibition by antipsychotic drugs. Biochem. Biophys. Res. Commun. 98:669–676.

    PubMed  Google Scholar 

  26. Schatzmann, R. C., Raynor, R. L., and Kuo, J. F. 1983. N-(6-aminohexyl)-5-chloro-1-n napthalenesulfonamide (W-7), a calmodulin antagonist, also inhibits phospholipid-sensitive calcium-dependent protein kinase. Biochim. Biophys. Acta 755:144–147.

    PubMed  Google Scholar 

  27. Hannun, Y. A., and Bell, R. M. 1989. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 243:500–507.

    PubMed  Google Scholar 

  28. Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y. 1984. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry 23:5036–5041.

    PubMed  Google Scholar 

  29. Yanagihara, N., Tachikawa, E., Izumi, F., Yasugawa, S., Yamamoto, H., and Miyamoto, E. 1991. Staurosporine: An effective inhibitor for Ca/calmodulin-dependent protein kinase II. J. Neurochem. 56:294–298.

    PubMed  Google Scholar 

  30. Waxyam, M. N., Malenka, R. C., Kelly, P. T., and Mauk, M. D. 1993. Calcium/calmodulin-dependent protein kinase II regulates hippocampal synaptic transmission. Brain Res. 609:1–8.

    PubMed  Google Scholar 

  31. Kennedy, M. B., and Greengard, P. 1981. Two calcium/calmodulin-dependent protein kinases, which are highly concentrated in brain, phosphorylate protein I at distinct sites. Proc. Natl. Acad. Sci. USA 78:1293–1297.

    PubMed  Google Scholar 

  32. Kennedy, M. B., McGuinness, T., and Greengard, P. 1983. A calcium/calmodulin-dependent protein kinase from mammalian brain that phosphorylates synapsin 1: partial purification and characterization. J. Neurosci. 3:818–831.

    PubMed  Google Scholar 

  33. Erondu, N. E., and Kennedy, M. B. 1985. Regional distribution of type II Ca/calmodulin-dependent protein kinase in rat brain. J. Neurosci. 5:3270–3277.

    PubMed  Google Scholar 

  34. Reuter, H. 1983. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301:569–574.

    PubMed  Google Scholar 

  35. Armstrong, D., and Eckert, R. 1987. Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization. Proc. Natl. Acad. Sci. USA 84:2518–2522.

    PubMed  Google Scholar 

  36. DeRiemer, S. A., Strong, J. A., Albert, K. A., Greengard, P., and Kaczmarek, L. K. 1985. Enhancement of calcium current in Aplysia neurons by phorbol ester and protein kinase C. Nature 313: 313–316.

    PubMed  Google Scholar 

  37. Strong, J. A., Fox, A. P., Tsien, R. W., and Kaczmarek, L. K. 1987. Stimulation of protein kinase C recruits covert calcium channels in Aplysia bag cell neurons. Nature 325:714–717.

    PubMed  Google Scholar 

  38. Lacerda, A. E., Rampe, D., and Brown, A. M. 1988. Effects of protein kinase C activators on cardiac Ca channels. Nature 335: 249–251.

    PubMed  Google Scholar 

  39. Mundina-Weilenmann, C., Chang, C. F., Gutierrez, L. M., and Hosey, M. M. 1991. Demonstration of the phosphorylation of dihydropyridine sensitive calcium channels in chick skeletal muscle and the resultant activation of the channels after reconstitution. Biochem. J. 266:4067–4073.

    Google Scholar 

  40. Nunoki, K., Florio, V., and Catterall W. A. 1989. Activation of purified calcium channels by stoichiometric protein phosphorylation. Proc. Natl. Acad. Sci. USA 86:6816–6820.

    PubMed  Google Scholar 

  41. Johnson, J. D. 1984. A calmodulin-like Ca receptor in the Ca channel. Biophys. J. 45:134–136.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sitges, M., Dunkley, P.R. & Chiu, L.M. A role for calcium/calmodulin kinase(s) in the regulation of GABA exocytosis. Neurochem Res 20, 245–252 (1995). https://doi.org/10.1007/BF00969539

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969539

Key Words

Navigation