Neurochemical Research

, Volume 20, Issue 3, pp 245–252 | Cite as

A role for calcium/calmodulin kinase(s) in the regulation of GABA exocytosis

  • María Sitges
  • Peter R. Dunkley
  • Luz María Chiu
Original Articles


A possible role for protein kinases in the regulation of GABA exocytosis in nerve endings was investigated. The effect on the release of the radioactive neurotransmitter ([3H]GABA) from mouse brain synaptosomes of several protein kinase inhibitors was estimated after treatment with 37 mM K+ in the absence of external Na+, a condition under which [3H]GABA release is completely Ca2+ dependent. Among the inhibitors one group inhibit the kinases by binding to the catalytic site (i.e. staurosporine and H7) and others (TFP, sphingosine and W7) act on the regulatory site of protein kinases. The compounds of the second group, which are reported to inhibit calmodulin dependent events and the increase in cytosolic Ca2+ (Ca i ) induced by high K+ depolarization, were the most efficient inhibitors of [3H]GABA release. The selective inhibitor of CaMPK II, KN-62, also markedly diminished [3H]GABA release as well as the increase in Ca i induced by high K+. The kinase inhibitors from the first group that are unable to diminish the increase in Ca i induced by high K+ were also less efficient inhibitors of [3H]GABA release even at high concentrations. The present results indicate that at the doses tested all the drugs inhibit to some extent the release of the Ca2+ dependent fraction of [3H]GABA perhaps by inhibiting a CaMPK II mediated phosphorylation step triggered by depolarization and facilitated by the elevation of Ca i . In addition, the second group of antagonists and KN-62 inhibit the elevation of Ca i to high K+ thus exhibiting a higher efficiency on [3H]GABA release than the first group of antagonists.

Key Words

Calcium calmodulin kinase GABA exocytosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sihra, T. S., and Nicholls, D. G. 1987. 4-Aminobutyrate can be released exocytotically from guinea-pig cerebral cortical synaptosomes. J. Neurochem. 49:261–267.PubMedGoogle Scholar
  2. 2.
    Sitges, M., Chiu, L. M., and González, L. 1993. Vesicular and carrier-mediated depolarization-induced release of H-GABA: Inhibition by verapamil and amiloride. Neurochem. Res. 18:1081–1087.PubMedGoogle Scholar
  3. 3.
    Wang, J. K. T., Walaas, S. I., and Greengard, P. 1988. Protein phosphorylation in nerve terminals: Comparison of calcium/calmodulin-dependent and calcium/diacylglycerol-dependent systems. J. Neurosci. 8:281–288.PubMedGoogle Scholar
  4. 4.
    Dunkley, P. R., Baker, C. M., and Robinson, P. J. 1986. Depolarization-dependent protein phosphorylation in rat cortical synaptosomes: Characterization of active protein kinases by phosphopeptide analysis of substrates. J. Neurochem. 46:1692–1703.PubMedGoogle Scholar
  5. 5.
    Dunkley, P. R. 1992. Autophosphorylation of neuronal calcium/calmodulin-stimulated protein kinase II. Mol. Neurobiol. 5:179–202.Google Scholar
  6. 6.
    Dekker, L. V., De Graan, P. N. E., De Wit, M., Hens, J. J. H., and Gispen, W. H. 1990. Depolarization-induced phosphorylation of the protein kinase C substrate B-50 (GAP-43) in rat cortical synaptosomes. J. Neurochem. 54:1645–1652.PubMedGoogle Scholar
  7. 7.
    Robinson, P. J. 1992. Potencies of protein kinase C inhibitors are dependent on the activators used to stimulate the enzyme. Biochem. Pharmacol. 44:1325–1334.PubMedGoogle Scholar
  8. 8.
    Nichols, R. A., Chilcote, T. J., Czernik, A. J., and Greengard, P. 1992. Synapsin I regulates glutamate release from rat brain synaptosomes. J. Neurochem. 58:783–785.PubMedGoogle Scholar
  9. 9.
    Dekker, L. V., De Graan, P. N. E., Spierenburg, H., De Wit, M., Versteeg, D. H. G., and Gispen, W. H. 1990. Evidence for a relationship between B-50 (GAP-43) and [H]noradrenaline release in rat brain synaptosomes. Europ. J. Pharmacol. 188:113–122.Google Scholar
  10. 10.
    De Graan, P. N. E., and Gispen, W. H. 1993. The role of B-50/GAP-43 in transmitter release: studies with permeated synaptosomes. Biochem. Soc. Trans. 21:103–107.Google Scholar
  11. 11.
    Massom, L., Lee, H., and Jarrett, H. W. 1990. Trifluoperazine binding to porcine brain calmodulin and skeletal muscle troponin C. Biochemistry 29:671–681.PubMedGoogle Scholar
  12. 12.
    Hidaka, H., Yamaki, T., Naka, M., Tanaka, T., Hayashi, H., and Kobayashi, R. 1980. Calcium-regulated modulator protein interacting agents inhibit smooth muscle calcium-stimulated protein kinase and ATPase. Mol. Pharmacol. 17:66–72.PubMedGoogle Scholar
  13. 13.
    Hidaka, H., Sasaki, Y., Tanaka, T., Endo, T., Ohno, S., Fujii, Y., and Nagata, T. 1981. N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc. Natl. Acad. Sci. USA 78:4354–4357.PubMedGoogle Scholar
  14. 14.
    Jefferson, A. B., and Schulman, H. 1988. Sphingosine inhibits calmodulin-dependent enzymes. J. Biol. Chem. 263:15241–15224.PubMedGoogle Scholar
  15. 15.
    Sitges, M., and Talamo, B. R. 1993. Sphingosine, W-7 and trifluoperazine inhibit the elevation in the cytosolic calcium induced by high K+ depolarization in synaptosomes. J. Neurochem. 61: 443–450.PubMedGoogle Scholar
  16. 16.
    Nichols, R. A., Sihra, T. S., Czernik, A. J., Nairn, A. C., and Greengard, P. 1990. Calcium/calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes. Nature 343:647–651.PubMedGoogle Scholar
  17. 17.
    Hidaka, H., and Kobayashi, R. 1992. Pharmacology of protein kinase inhibitors. Annu. Rev. Pharmacol. Toxicol. 32:377–397.PubMedGoogle Scholar
  18. 18.
    Hajós, F. 1975. An improved method for the preparation of synaptosomal fractions in high purity. Brain Res. 136:387–392.Google Scholar
  19. 19.
    Sitges, M. 1989. Characterization of the effect of monensin on α-amino-n-butyric acid release from isolated nerve terminals. J. Neurochem. 53:442–447.PubMedGoogle Scholar
  20. 20.
    Tapia, R., and Sitges, M. 1982. Effect of 4-aminopyridine on transmitter release in synaptosomes. Brain Res. 250:291–299.PubMedGoogle Scholar
  21. 21.
    Grynkiewicz, G., Poenie, M., and Tsien, R. Y. 1985. A new generation of Ca indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450.PubMedGoogle Scholar
  22. 22.
    Ichikawa, M., Urayama, M., and Matsumoto, G. 1991. Antical-modulin drugs block the sodium gating current of squid giant axons. J. Membrane Biol. 120:211–222.Google Scholar
  23. 23.
    Tibbs, G. R., Barrie, A. P., Van Mieghem, F. J. E., McMahon, H. T., and Nicholls, D. G. 1989. Repetitive action potentials in isolated nerve terminals in the presence of 4-aminopyridine: Effects on cytosolic free Ca and glutamate release. J. Neurochem. 53: 1693–1699.PubMedGoogle Scholar
  24. 24.
    Robinson, P. J., and Dunkley, P. R. 1985. Depolarization-dependent protein phosphorylation and dephosphorylation in rat cortical synaptosomes is modulated by calcium. J. Neurochem. 44:338–348.PubMedGoogle Scholar
  25. 25.
    Schatzmann, R. C., Wise, B. C., and Kuo, J. F. 1981. Phospholipid-sensitive calcium-dependent protein kinase: inhibition by antipsychotic drugs. Biochem. Biophys. Res. Commun. 98:669–676.PubMedGoogle Scholar
  26. 26.
    Schatzmann, R. C., Raynor, R. L., and Kuo, J. F. 1983. N-(6-aminohexyl)-5-chloro-1-n napthalenesulfonamide (W-7), a calmodulin antagonist, also inhibits phospholipid-sensitive calcium-dependent protein kinase. Biochim. Biophys. Acta 755:144–147.PubMedGoogle Scholar
  27. 27.
    Hannun, Y. A., and Bell, R. M. 1989. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 243:500–507.PubMedGoogle Scholar
  28. 28.
    Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y. 1984. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry 23:5036–5041.PubMedGoogle Scholar
  29. 29.
    Yanagihara, N., Tachikawa, E., Izumi, F., Yasugawa, S., Yamamoto, H., and Miyamoto, E. 1991. Staurosporine: An effective inhibitor for Ca/calmodulin-dependent protein kinase II. J. Neurochem. 56:294–298.PubMedGoogle Scholar
  30. 30.
    Waxyam, M. N., Malenka, R. C., Kelly, P. T., and Mauk, M. D. 1993. Calcium/calmodulin-dependent protein kinase II regulates hippocampal synaptic transmission. Brain Res. 609:1–8.PubMedGoogle Scholar
  31. 31.
    Kennedy, M. B., and Greengard, P. 1981. Two calcium/calmodulin-dependent protein kinases, which are highly concentrated in brain, phosphorylate protein I at distinct sites. Proc. Natl. Acad. Sci. USA 78:1293–1297.PubMedGoogle Scholar
  32. 32.
    Kennedy, M. B., McGuinness, T., and Greengard, P. 1983. A calcium/calmodulin-dependent protein kinase from mammalian brain that phosphorylates synapsin 1: partial purification and characterization. J. Neurosci. 3:818–831.PubMedGoogle Scholar
  33. 33.
    Erondu, N. E., and Kennedy, M. B. 1985. Regional distribution of type II Ca/calmodulin-dependent protein kinase in rat brain. J. Neurosci. 5:3270–3277.PubMedGoogle Scholar
  34. 34.
    Reuter, H. 1983. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301:569–574.PubMedGoogle Scholar
  35. 35.
    Armstrong, D., and Eckert, R. 1987. Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization. Proc. Natl. Acad. Sci. USA 84:2518–2522.PubMedGoogle Scholar
  36. 36.
    DeRiemer, S. A., Strong, J. A., Albert, K. A., Greengard, P., and Kaczmarek, L. K. 1985. Enhancement of calcium current in Aplysia neurons by phorbol ester and protein kinase C. Nature 313: 313–316.PubMedGoogle Scholar
  37. 37.
    Strong, J. A., Fox, A. P., Tsien, R. W., and Kaczmarek, L. K. 1987. Stimulation of protein kinase C recruits covert calcium channels in Aplysia bag cell neurons. Nature 325:714–717.PubMedGoogle Scholar
  38. 38.
    Lacerda, A. E., Rampe, D., and Brown, A. M. 1988. Effects of protein kinase C activators on cardiac Ca channels. Nature 335: 249–251.PubMedGoogle Scholar
  39. 39.
    Mundina-Weilenmann, C., Chang, C. F., Gutierrez, L. M., and Hosey, M. M. 1991. Demonstration of the phosphorylation of dihydropyridine sensitive calcium channels in chick skeletal muscle and the resultant activation of the channels after reconstitution. Biochem. J. 266:4067–4073.Google Scholar
  40. 40.
    Nunoki, K., Florio, V., and Catterall W. A. 1989. Activation of purified calcium channels by stoichiometric protein phosphorylation. Proc. Natl. Acad. Sci. USA 86:6816–6820.PubMedGoogle Scholar
  41. 41.
    Johnson, J. D. 1984. A calmodulin-like Ca receptor in the Ca channel. Biophys. J. 45:134–136.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • María Sitges
    • 1
  • Peter R. Dunkley
    • 2
  • Luz María Chiu
    • 1
  1. 1.Unidad de Psicofarmacología Molecular, PUIS, UNAM of Depto. de Biología Molecular, Instituto de Investigaciones Biomédicas, UNAM and División de Investigaciones ClínicasInstituto Mexicano de Psiquiatría, SSAMexico CityMexico
  2. 2.The Neuroscience Group Faculty of MedicineUniversity of NewcastleAustralia

Personalised recommendations