Siberian Mathematical Journal

, Volume 22, Issue 4, pp 545–551 | Cite as

Finiteness of a basis of identities of some associative rings

  • M. V. Volkov
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    R. L. Kruse, “Identities satisfied by a finite ring,” J. Algebra,26, No. 2, 298–318 (1973).Google Scholar
  2. 2.
    T. Evans, “Some finitely based varieties of rings,” J. Austral. Math. Soc.,17, No. 2, 246–255 (1974).Google Scholar
  3. 3.
    C. M. Bang and K. Mandelberg, “Finite basis theorem for rings and algebras satisfying a central condition,” J. Algebra,34, No. 1, 105–113 (1975).Google Scholar
  4. 4.
    D. E. Cohen, “Laws of a metabelian variety,” J. Algebra,5, No. 3, 267–273 (1967).Google Scholar
  5. 5.
    I. V. L'vov, “On varieties of associative rings. 1,” Algebra Logika,12, No. 3, 269–297 (1973).Google Scholar
  6. 6.
    A. I. Mal'tsev, “Multiplication of classes of algebraic systems,” Sib. Mat. Zh.,8, No. 2, 346–365 (1967).Google Scholar
  7. 7.
    I. Z. Golubchik and A. V. Mikhalev, “A note on varieties of semiprime rings with semigroup identities,” J. Algebra,54, No. 1, 42–45 (1978).Google Scholar
  8. 8.
    M. V. Volkov, “Periodic varieties of associative rings,” Izv. Vyssh. Uchebn. Zaved., No. 8, 3–13 (1979).Google Scholar
  9. 9.
    M. V. Volkov, “Lattices of varieties of algebras,” Mat. Sb.,109, No. 1, 60–79 (1979).Google Scholar
  10. 10.
    G. Pickert, “Zur Ubertragung der Kettensatze,” Math. Annalen,121, No. 1, 100–102 (1949).Google Scholar
  11. 11.
    K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, and A. I. Shirshov, Near-Associative Rings [in Russian], Nauka, Moscow (1978).Google Scholar
  12. 12.
    J. Lewin, “Subrings of finite index in finitely generated rings,” J. Algebra,5, No. 1, 84–88 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • M. V. Volkov

There are no affiliations available

Personalised recommendations