Siberian Mathematical Journal

, Volume 13, Issue 1, pp 30–35 | Cite as

Order and disjoint completeness of linear partially ordered spaces

  • A. I. Veksler
  • V. A. Geiler


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    L. V. Kantorovich, “Partially ordered linear spaces and their applications in the theory of linear operators,” Dokl. Akad. Nauk SSSR,4, No. 1, 11–14 (1935).Google Scholar
  2. 2.
    L. V. Kantorovich, “On the properties of partially ordered linear spaces,” Compts. Rends, Acad. Sci. Paris,202, 813–816 (1936).Google Scholar
  3. 3.
    P. Cohen, Universal Algebra [Russian translation], Mir (1968).Google Scholar
  4. 4.
    A. I. Veksler, “The concept of normal in itself linear lattice and some applications in the theory of linear and normed linear lattices,” Izv. Vuzov. Matem., No. 4, 13–22 (1966).Google Scholar
  5. 5.
    R. Sikorskii Boolean Algebras [Russian translation], Mir (1969).Google Scholar
  6. 6.
    S. J. Bernau, “Orthocompletion of lattice groups,” Proc. London Math. Soc.,16, No. 1, 107–130 (1966).Google Scholar
  7. 7.
    P. Conrad, “The lateral completion of a lattice-ordered group,” Proc. London Math. Soc.,19, No. 3, 444–480 (1969).Google Scholar
  8. 8.
    B. Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces [in Russian], Fizmatgiz (1961).Google Scholar
  9. 9.
    A. I. Veksler, “Realization of Archimedian K-lineals,” Sibirsk. Matem. Zh.,3, No. 1, 7–16 (1962).Google Scholar
  10. 10.
    L. V. Kantorovich, B. Z. Vulikh, and A. G. Pinsker, Functional Analysis in Partially Ordered Spaces [in Russian], Gos. Izd. Tekh.-Teoret. Lit. Moscow-Leningrad (1950).Google Scholar
  11. 11.
    A. I. Veksler, “Localness of functional vector lattices,” Sibirsk. Matem. Zh.,12, No. 1, 54–64 (1971).Google Scholar
  12. 12.
    A. I. Veksler, “Banach and Dedekind completeness of spaces of continuous functions, vector lattices and maximal quotient rings,” Dokl. Akad. Nauk SSSR,196 No. 1, 20–23 (1971).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1972

Authors and Affiliations

  • A. I. Veksler
  • V. A. Geiler

There are no affiliations available

Personalised recommendations