Neurochemical Research

, Volume 18, Issue 4, pp 417–423 | Cite as

Heterogeneous distribution of functionally important amino acids in brain areas of adult and aging humans

  • M. Banay-Schwartz
  • M. Palkovits
  • A. Lajtha
Microanatomy and Metabolism


The regional distribution of seven amino acids thought to have inhibitory neurotransmitter or neurotransmitter precursor function—GABA, glycine, taurine, serine, threonine, phenylalanine, and tyrosine—was determined in 52 discrete areas from brain of adult and old humans. Significant heterogeneity was found, with 3- to 16-fold differences in levels in the various regions analyzed. The patterns of distribution were somewhat different from those in the adult or old rat brain. Relatively few changes were seen in old brain. Heterogeneity in distribution has to be taken into account in assessing physiological changes in amino acid levels and metabolism.

Key Words

Regional amino acids amino acids in aging human brain amino acids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Perry, T. L. 1982. Cerebral amino acid pools. Pages 151–179,in Lajtha, A. (ed.), Handbook of Neurochemistry, Plenum Press, New York.Google Scholar
  2. 2.
    Levi, G., Kandera, J., and Lajtha, A. 1967. Control of cerebral metabolite levels. I. Amino acid uptake and levels in various species. Arch. Biochem. Biophys. 119:303–311.Google Scholar
  3. 3.
    Perry, T. L., Hansen, S., and Gandham, S. S. 1981. Postmortem changes of amino compounds in human and rat brain. J. Neurochem. 36:406–414.Google Scholar
  4. 4.
    Donzanti, B. A. and Ung, A. K. 1989. Alterations in neurotransmitter amino acid content in the aging rat striatum are subregion dependent. Neurobiol. Aging 11:159–162.Google Scholar
  5. 5.
    Kandera, J., Levi, G., and Lajtha, A. 1968. Control of cerebral metabolite levels—II. Amino acid uptake and levels in various areas of the rat brain. Arch. Biochem. Biophys. 126:249–260.Google Scholar
  6. 6.
    Battistin, L., Grynbaum, A., and Lajtha, A. 1969. Distribution and uptake of amino acids in various regions of the cat brain in vitro. J. Neurochem. 16:1459–1468.Google Scholar
  7. 7.
    Battistin, L., and Lajtha, A. 1970. Regional distribution and movement of amino acids in the brain. J. Neurol. Sci. 10:313–322.Google Scholar
  8. 8.
    Perry, T. L., Barry, K., Hansen, S., Diamond, S., and Mok, C. 1971. Regional distribution of amino acids in human brain obtained at autopsy. J. Neurochem. 18:513–519.Google Scholar
  9. 9.
    Palkovits, M., Elekes, I., Lang, T., and Patthy, A. 1986. Taurine levels in discrete brain nuclei of rats. J. Neurochem. 47:1333–1335.Google Scholar
  10. 10.
    Jensen, K. L. R., Faull, R. L. M., Dragunow, M., and Leslie, R. A. 1991. Distribution of excitatory and inhibitory amino acid, sigma, monoamine, catecholamine, acetylcholine, opioid, neurotensin, substance P, adenosine and neuropeptide Y receptors in human motor and somatosensory cortex. Brain Res. 566:225–238.Google Scholar
  11. 11.
    Palkovits, M., Lang, T., Patthy, A., and Elekes, I. 1986. Distribution and stress-induced increase of glutamate and aspartate levels in discrete brain nuclei of rats. Brain Res. 373:252–257.Google Scholar
  12. 12.
    Banay-Schwartz, M., Lajtha, A., and Palkovits, M. 1989. Changes with aging in the levels of amino acids in rat CNS structural elements. I. Glutamate and related amino acids. Neurochem. Res. 14:555–562.Google Scholar
  13. 13.
    Banay-Schwartz, M., Lajtha, A. and Palkovits, M. 1989. Changes with aging in the levels of amino acids in rat CNS structural elements II. Taurine and small neutral amino acids. Neurochem. Res. 14:563–570.Google Scholar
  14. 14.
    Banay-Schwartz, M., Lajtha, A., and Palkovits, M. 1990. Changes with aging in the levels of amino acids in rat CNS structural elements: III. Large neutral amino acids. J. Neurosci. Res. 26:209–216.Google Scholar
  15. 15.
    Banay-Schwartz, M., Lajtha, A., and Palkovits, M. 1990. Changes with aging in the levels of amino acids in rat CNS structural elements: IV. Methionine and basic amino acids. J. Neurosci. Res. 26:217–223.Google Scholar
  16. 16.
    Palkovits, M. 1973. Isolated removal of hypothalamic or other brain nuclei of the rat. Brain Res. 59:449–450.Google Scholar
  17. 17.
    Banay-Schwartz, M., Kenessey, A., DeGuzman, T., Lajtha, A., and Palkovits, M. 1992. Protein content of various regions of rat brain and adult and aging human brain. Age 15:51–54.Google Scholar
  18. 18.
    Walberg, F., Ottersen, O. P., and Rinvik, E. 1990. GABA, glycine, aspartate, glutamate and taurine in the vestibular nuclei: an immunocytochemical investigation in the cat. Exp. Brain Res. 79:547–563.Google Scholar
  19. 19.
    Perry, T. L., Hansen, S., Berry, K., Mok, C., and Lesk, D. 1971. Free amino acids and related compounds in biopsies of human brain. J. Neurochem. 18:521–528.Google Scholar
  20. 20.
    Lajtha, A. and Toth, J. 1974. Postmortem changes in the cerebral free amino acid pool. Brain Res. 76:546–551.Google Scholar
  21. 21.
    Lajtha, A. and Toth, J. 1973. Perinatal changes in the free amino acid pool of the brain in mice. Brain Res. 55:238–241.Google Scholar
  22. 22.
    Huether, G., and Lajtha, A. 1991. Changes in free amino acid concentrations in serum, brain, and CSF throughout embryogenesis. Neurochem. Res. 16:145–150.Google Scholar
  23. 23.
    Davis, J. M. and Himwich, W. A. 1973. Amino acids and proteins of developing mammalian brain. Pages 55–110, in Himwich, W. (ed.), Biochemistry of the Developing Brain, Marcel Dekker, Inc., New York.Google Scholar
  24. 24.
    Hunter, C., Chung, E., and Van Woert, M. H. 1989. Age-dependent changes in brain glycine concentration and strychnine-induced seizures in the rat. Brain Res. 482:247–251.Google Scholar
  25. 25.
    van Gelder, N. M., Sherwin, A. L., and Rasmussen, T. 1972. Amino acid content of epileptogenic human brain: Focal versus surrounding regions. Brain Res. 40:385–393.Google Scholar
  26. 26.
    Hansen, S., Perry, T. L., Wada, J. A., and Sokol, M. 1973. Brain amino acids in baboons with light-induced epilepsy. Brain Res. 50:480–483.Google Scholar
  27. 27.
    Lehmann, A. 1989. Abnormalities in the levels of extracellular and tissue amino acids in the brain of the seizure-susceptible rat. Epilepsy Res. 3:130–137.Google Scholar
  28. 28.
    van Gelder, N. M., Siatitsas, I., Menini, C., and Gloor, P. 1983. Feline generalized penicillin epilepsy: Changes of glutamic acid and taurine parallel the progressive increase in excitability of the cortex. Epilepsia 24:200–213.Google Scholar
  29. 29.
    Hategan, D., Balaita, C., Manole, E., Voiculescu, V., and Ulmeanu, A. 1990. Brain amino acid levels in audiogenic seizuresusceptible rats following habituation to the auditory stimulus. Romanian J. Neurol. Psychiat. 28:15–18.Google Scholar
  30. 30.
    Simler, S., Ciesielski, L., Clement, J., and Mandel, P. 1990. Amino acid neurotransmitter alterations in three sublines of Rb mice differing by their susceptibility to audiogenic seizures. Neurochem. Res. 15:687–693.Google Scholar
  31. 31.
    Perry, T. L., Hansen, S., and Jones, K. 1988. Brain amino acids and glutathione in progressive supranuclear palsy. Neurology 38:943–946.Google Scholar
  32. 32.
    Perry, T. L., Kish, S. J., Hansen, S., and Currier, R. D. 1981. Neurotransmitter amino acids in dominantly inherited cerebellar disorders. Neurology 31:237–242.Google Scholar
  33. 33.
    Perry, T. L., Hansen, S., and Jones, K. 1987. Brain glutamate deficiency in amyotrophic lateral sclerosis. Neurology 37:1845–1848.Google Scholar
  34. 34.
    Ferrari, M. D., Odink, J., Bos, K. D., Malessy, M. J. A., and Bruyn, G. W. 1990. Neuroexcitatory plasma amino acids are elevated in migraine. Neurology 40:1582–1586.Google Scholar
  35. 35.
    Guilarte, T. R. 1989. Regional changes in the concentrations of glutamate, glycine, taurine, and GABA in the vitamin B-6 deficient developing rat brain: association with neonatal seizures. Neurochem. Res. 14:889–897.Google Scholar
  36. 36.
    Klunk, W. E., Panchalingam, K., McClure, R. J., and Pettegrew, J. W. 1991. Proton [3H]NMR studies of amino acids in Alzheimer's disease brain. Biol. Psychiat. 29:122A.Google Scholar
  37. 37.
    Sershen, H., Reith, M. E. A., Banay-Schwartz, M., and Lajtha, A. 1982. Effects of prenatal administration of nicotine on amino acid pools, protein metabolism, and nicotine binding in the brain. Neurochem. Res. 7:1515–1522.Google Scholar
  38. 38.
    Toth, J. and Lajtha, A. 1981. Drug-induced changes in the composition of the cerebral free amino acid pool. Neurochem. Res. 6:3–12.Google Scholar
  39. 39.
    Perry, T. L., Hansen, S., and Kish, S. J. 1980. Effects of chronic administration of antipsychotic drugs on GABA and other amino acids in the mesolimbic area of rat brain. Life Sci. 24:283–288.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • M. Banay-Schwartz
    • 1
  • M. Palkovits
    • 2
  • A. Lajtha
    • 1
  1. 1.Center for NeurochemistryThe Nathan S. Kline Institute for Psychiatric ResearchOrangeburg
  2. 2.Laboratory of NeuromorphologySemmelweis University Medical SchoolBudapestHungary

Personalised recommendations