Neurochemical Research

, Volume 17, Issue 2, pp 157–166 | Cite as

Is myelin basic protein crystallizable?

  • Jan Sedzik
  • Daniel A. Kirschner
Original Articles


Myelin basic protein (MBP) is the predominant extrinsic protein in both central and peripheral nervous system myelins. It is thought to be involved in the stabilizing interactions between myelin membranes, and it may play an important role in demyelinating diseases such as multiple sclerosis. In spite of the fact that this abundant protein has been known for almost three decades, its three-dimensional crystal structure has not yet been determined. In this study we report on our extensive attempts to crystallize the major 18.5 kDa isoform of MBP. We used MBP having different degrees of purity, ranging from crude MBP (that was acid or salt extracted from isolated myelin), to highest purity single isoform. We used conventional strategies in our search for a suitable composition or a crystallization medium. We applied both full and incomplete factorial searches for crystallization conditions. We analyzed the available data on proteins which have previously resisted crystallization, and applied this information to our own experiments. Nevertheless, despite our efforts which included 4600 different conditions, we were unable to induce crystallization of MBP. Previous work on MBP indicates that when it is removed from its native environment in the myelin membrane and put in crystallization media, the protein adopts a random coil conformation and persists as a population of structurally non-identical molecules. This thermodynamically preferred state presumably hinders crystallization, because the most fundamental factor of protein crystallization-homogeneity of tertiary structure-is lacking. We conclude that as long as its random coil flexibility is not suppressed, 18.5 kDa MBP and possibly also its isoforms will remain preeminent examples of proteins that cannot be crystallized.

Key Words

Myelin basic protein random coil X-ray diffraction protein crystallization beta-conformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ganser, A. L., and Kirschner, D. A. 1980. Myelin structure in the absence of basic protein in shiverer mouse. Pages 171–176,in Baumann, N., (ed.), Neurological Mutations Affecting Myelination, Elsevier/North Holland Biomedical Press.Google Scholar
  2. 2.
    Gupta, M. K. 1987. Myelin basic protein and demyelinating diseases. CRC Crit. Rev. Clin. Labor. Sci. 24:287–314.Google Scholar
  3. 3.
    Sedzik, J., Bergfors, T., Jones, T. A., and Weise, M. 1988. Bovine P2 myelin basic protein crystallizes in three different forms. J. Neurochem. 50:1908–1913.PubMedGoogle Scholar
  4. 4.
    Weise, M. J., and Brostoff, S. W. 1985. Research methods in studies with the P2 basic protein. Res. Meth. Neurochem., 6:263–302.Google Scholar
  5. 5.
    Jones, T. A., Bergfors, T., Sedzik, J. and Unge, T. 1988. The three-dimensional structure of P2 myelin basic protein. EMBO J., 7:1597–1604.PubMedGoogle Scholar
  6. 6.
    Thomas, W.-H., Weser, U., and Hempel, K. 1977. Conformational changes induced by ionic strength and pH in two bovine myelin basic proteins. Hoppe-Seyler's Z. Physiol. Chem., 358:1345–1352.PubMedGoogle Scholar
  7. 7.
    Martenson, R. E. 1981. Prediction of the secondary structure of myelin basic protein. J. Neurochem., 36:1543–1570.PubMedGoogle Scholar
  8. 8.
    Stoner, G. L. 1984. Predicted folding of β-structure in myelin basic protein. J. Neurochem. 43:433–447.PubMedGoogle Scholar
  9. 9.
    Martenson, R. E., 1986. Possible hydrophobic region in myelin basic protein consisting of an orthogonally packed β-sheet. J. Neurochem. 46:1612–1622.PubMedGoogle Scholar
  10. 10.
    Stoner, G. 1990. Conservation throughout vertebrate evolution of the predicted β-strands in myelin basic protein. J. Neurochem., 55:1404–1411.PubMedGoogle Scholar
  11. 11.
    Sedzik, J., Sinclair, A., Fraser, P. E., and Kirschner, D. 1989. Is myelin basic protein crystallizable? Abstracts of the Third International Conference on Crystallization of Biological Macromolecules. August 13–19, Washington, D.C., p. 75.Google Scholar
  12. 12.
    Martenson, R. E. 1982. Postranslational modification of myelin basic protein. Pages 103–106,in Peeters, H. (ed.) Protides of the Biological Fluids. Proc. 30th Colloquium, Oxford, Pergamon Press.Google Scholar
  13. 13.
    Martenson, R. E., Deibler, G. E., and Kies, M. M. 1969. Extraction of rat myelin basic protein free of other basic protein of whole central nervous tissue. J. Biol. Chem. 244:4261–4267.PubMedGoogle Scholar
  14. 14.
    Keniry, M. A., and Smith, R. 1978. Circular dichroic analysis of the secondary structure of myelin basic protein and derived peptides bound to detergents and lipid vesicles. Biochim. Biophys. Acta 578:381–391.Google Scholar
  15. 15.
    Berlet, H. H. 1989. Binding mechanism of Zn2+ and nonionic retention of salt-soluble myelin proteins by the myelin sheath. J. Neurochem. 52:S196.Google Scholar
  16. 16.
    Liebes, L. F., Zand, R., and Phillips, W. D. 1975. Solution behavior, circular dichroism and 220 Mhz NMR studies of the bovine myelin basic protein. Biochim. Biophys. Acta, 405:27–39.PubMedGoogle Scholar
  17. 17.
    Liebes, L. F., Zand, R., and Phillips, W. D. 1976. The solution behavior of the bovine myelin basic protein in the presence of anionic ligands. Binding behavior with the red component of trypan blue and sodium dodecyl sulfate. Biochim. Biophys. Acta, 427:292–409.Google Scholar
  18. 18.
    Smith, R. 1977. The secondary structure of myelin basic protein extracted by deoxycholate. Biochim. Biophys. Acta, 491:581–590.PubMedGoogle Scholar
  19. 19.
    Sousa, R., Lafer, E. M., and Wang, B. C. 1991. Preparation of crystals of T7 RNA polymerase suitable for high-resolution x-ray structure analysis. J. Cryst. Growth 110:237–246.Google Scholar
  20. 20.
    Grzeskowiak, M. K., Yoon, C., Larsen, T. A., Kopka, M. L., and Dickerson, R. E. 1989. A systematic study of DNA crystallization by vapor diffusion in spot plates. Abstract of the Third International Conference on Crystallization of Biological Macromolecules, Washington, D.C., August 13–19, p. 25.Google Scholar
  21. 21.
    Mendz, G. L., Brown, L. R., and Martenson, R. E. 1990. Interaction of myelin basic protein with mixed dodecylphosphocholine/palmitoyllysophosphatidic acid micelles. Biochemistry, 29:2304–2311.PubMedGoogle Scholar
  22. 22.
    McPherson, A. 1982. Preparation and Analysis of Protein Crystals. Pages 82–159, John Wiley and Sons, New York, N.Y.Google Scholar
  23. 23.
    McPherson, A. 1990. Current approaches to macromolecular crystallization. Europ. J. Biochem. 189:1–21.PubMedGoogle Scholar
  24. 24.
    Gilliland, G. L. J. 1988. The biological macromolecule crystallization data base: A basis for crystallization strategy. J. Cryst. Growth 90:51–59.Google Scholar
  25. 25.
    Carter, C. W. Jr., and Carter, C. W. 1979. Proteins crystallization using incomplete factorial experiments. J. Biol. Chem., 254:12219–12223.PubMedGoogle Scholar
  26. 26.
    Box, G. E. P., Hunter, W. G., and Hunter, J. S. 1978. Statistics for Experimenters. An Introduction to Design, Data Analysis, and Model Building. John Wiley and Sons. New York.Google Scholar
  27. 27.
    Neter, J., Wasserman, W., and Kutner M. 1985. Applied Linear Statistical Models. Regression, Analysis of Variance and Experimental Designs. Irwin. Inc., Homewood, Illinois, USA.Google Scholar
  28. 28.
    Plackett, R. L., and Burman, J. P. 1946. The design of optimum multifactorial experiment. Biometrica, 33:305–325.Google Scholar
  29. 29.
    Sumner, J. B. and Somers, G. F. 1943. The Enzymes, Academic Press, New York.Google Scholar
  30. 30.
    Lowden, J. A., Moscarello, M. A., and Morecki, R. 1966. The isolation and characterization of acid-soluble protein from myelin. Can. J. Biochem., 4:567–577.Google Scholar
  31. 31.
    Smith, R., and McDonald, B. J. 1979. Association of myelin basic protein with detergent micelles. Biochim. Biophys. Acta, 554:133–147.PubMedGoogle Scholar
  32. 32.
    Lattman, E., Burlingame, R., Hatch, C., and Moudrianakis, E. N. 1982. Crystallization of the tetramer of histones H3 and H4. Science, 216:1016–1018.PubMedGoogle Scholar
  33. 33.
    Martenson, R. E. 1978. The use of gel filtration to follow conformational changes in proteins. Conformational flexibility of bovine myelin basic protein. J. Biol. Chem., 24:8887–8893.Google Scholar
  34. 34.
    McPherson, A., Koszelak, S., Axelrod, H., Day, J., Williams, R., Robinson, L., McGrath M., and Cascio, D. 1986. An experiment regarding crystallization of soluble proteins in the presence of β-octyl glucoside. J. Biol. Chem., 261:1969–1975.PubMedGoogle Scholar
  35. 35.
    Gilliland, G. L. J., and Bickham, D. 1990. The biological macromolecule crystallization data base: A tool for developing crystallization strategies. Methods: A companion to Methods in Enzymology, 1:6–11.Google Scholar
  36. 36.
    Betts, L., Frick, L., Wolfenden, R., and Carter, C. W. 1989. Ineomplete factorial search for conditions leading to high quality crystals of Escherichia coli cytidine deaminase complexed to a transition state analog inhibitor. J. Biol. Chem., 264:6737–6740.PubMedGoogle Scholar
  37. 37.
    Sedzik, J., Blaurock, A. E., and Hoechli, M. 1984. Lipid/myelin basic protein multilayers. A model for the cytoplasmic space in central nervous system. J. Mol. Biol., 174:385–409.PubMedGoogle Scholar
  38. 38.
    Mateu, L., Luzzati, V., London, Y., Gould, R. M., Vosseberg, F. G. A., and Olive, J. 1973. X-ray diffraction and electron microscopy study of the interactions with myelin components: The structure of a lamellar phase with a 150–180 Å repeat distance containing basic proteins and acidic lipids. J. Mol. Biol., 75:697–709.PubMedGoogle Scholar
  39. 39.
    MacNaughton, W., Snook, K. A., Caspi, E., and Franks, N. P. 1985. An X-ray diffraction analysis of oriented lipid multilayers containing basic proteins. Biochim. Biophys. Acta, 818:132–148.PubMedGoogle Scholar
  40. 40.
    Eisenberg, D., and Hill, C. P. 1989. Protein crystallography: more surprises ahead. TIBS, 4, 260–264.Google Scholar
  41. 41.
    Kuhlbrandt, W. 1988. Three-dimensional crystallization of membrane protein. Q. Rev. Biophys., 21:429–477.PubMedGoogle Scholar
  42. 42.
    Garavito, R. M., and Picot, D. 1990. The art of crystallizing membrane proteins. Methods: A Companion to Methods in Enzymology, 1, 57–69.Google Scholar
  43. 43.
    Inman, J. K., and Bryan, R. F. 1966. The unit cell of crystalline α-lactalbumin. J. Mol. Biol., 15:683–684.PubMedGoogle Scholar
  44. 44.
    Cohen, C., and Tooney, N. M. 1974. Crystallization of modified fibrinogen. Nature, 251:659–660.PubMedGoogle Scholar
  45. 45.
    Solomon, A., McLaughlin, C. L., Wei, C. H., and Einstein, J. R. 1970. Bence-Jones proteins and light chains of immunoglobulins. J. Biol. Chem., 245:5289–5291.PubMedGoogle Scholar
  46. 46.
    Blundell, T. L. and Johnson, L. N. (1976) Protein Crystallography. Academic Press, New York, London, San Francisco, pp. 59–82.Google Scholar
  47. 47.
    Waehneldt, T. V., 1990. Phylogeny of myelin proteins. Ann. N.Y. Acad. Sci., 605:15–28.PubMedGoogle Scholar
  48. 48.
    Campagnoni, A. T. 1988. Molecular biology of myelin proteins from the central nervous system. J. Neurochem. 51:1–14.PubMedGoogle Scholar
  49. 49.
    Carnegie, P. T., and Moore, W., 1980. Myelin basic protein. Pages 119–143,in Bradshaw, R. A., and Schneider D. M. (eds.), Proteins of the Nervous System. Raven Press, New York.Google Scholar
  50. 50.
    Lees, M., and Brostoff, S. (1984) Proteins of Myelin. Pages 197–224,in Morell, P., (ed.), Myelin, New York and London, Plenum Press.Google Scholar
  51. 51.
    Inouye, H., and Kirschner, D. A. 1990. Physogenetic aspects of myelin structure. Pages 373–387,in Jesserich, G., Waehneldt, I. V., and Althaus, H. H. (eds.), Cellular and Molecular Biology of Myelination, NATO Advanced Research Workshop, Springer-Verlag.Google Scholar
  52. 52.
    Chapman, B. E., and Moore, W. J. 1976. Conformation of myelin basic protein in aqueous solution from nuclear magnetic resonance spectroscopy. Biochem. Biophys. Res. Comm., 73:758–766.PubMedGoogle Scholar
  53. 53.
    Price, W. S., Mendz, G. L., and Martenson, R. E. 1988. Conformation of heptadecapeptide comprising the segment encephalitogenic in Rhesus monkey. Biochemistry, 27:8990–8999.PubMedGoogle Scholar
  54. 54.
    Mendz, G. L., and Moore, W. J. 1985. NMR studies of myelin basic protein. Conformation of peptide that is an antigenic determinant for B-cell reactivity. Biochem. J., 229:305–313.PubMedGoogle Scholar
  55. 55.
    Palmer, F. B., and Davson, R. M. 1969. The isolation and properties of experimental allergic encephalitogenic protein. Biochem. J., 111:629–636.PubMedGoogle Scholar
  56. 56.
    Eylar, E. H. and Thompson, M. 1969. Allergic encephalomyelitis: the physico-chemical properties of the basic protein encephalitogen from bovine spinal cord. Archiv. Biochem. Biophys., 129:468–479.Google Scholar
  57. 57.
    Eng, L. F., Chao, F.-C., Gerstl, B. B., Pratt, D., and Tavaststjerna, M. G. 1969. The maturation of human white matter myelin. Biochemistry, 7:4455–4465.Google Scholar
  58. 58.
    Smith, R., and Braun, P. E. 1988. Release of proteins from surface of bovine central nervous system myelin by salts and phospholipases. J. Neurochem., 50:722–729.PubMedGoogle Scholar
  59. 59.
    Gow, A., and Smith, R. 1989. The thermodynamically stable state of myelin basic protein in aqueous solution is a flexible coil. Biochem. J., 257:535–540.PubMedGoogle Scholar
  60. 60.
    Zand, R., and Agrawal, K. 1982. Does myelin basic protein contain an esterolytic site? Trans. Am. Soc. Neurochem., 13:255.Google Scholar
  61. 61.
    Zand, R., and Agrawal, K. 1981. Inhibition of myelin basic protein esterase activity—a structure probe. Trans. Am. Soc. Neurochem., 12:255.Google Scholar
  62. 62.
    Zand, R., and Smith, M. 1979. The esterase activity of bovine myelin basic protein at pH 8.0. Trans. Am. Soc. Neurochem., 10:218.Google Scholar
  63. 63.
    Epand, R. M., Moscarello, M. A., Zierenberg, B., and Vail, W. 1974. The folded conformation of the encephalitogenic protein of human brain. Biochemistry, 13:1264–1267.PubMedGoogle Scholar
  64. 64.
    Krigbaum, W. R., and Hsu, T. S. 1975. Molecular conformation of bovine A1 protein, a coiling macromolecule in aqueous solution. Biochemistry, 14:2542–2546.PubMedGoogle Scholar
  65. 65.
    Chao, L. P., and Einstein, E. R. 1970. Physical properties of the bovine encephalitogenic protein: Molecular weight and conformation. J. Neurochem., 17:1121–1132.PubMedGoogle Scholar
  66. 66.
    Bellini, T., Rippa, M., Matteuzzi, M., Paolino, E., and Dallocchio, F. 1987. Polymerization of myelin basic protein. Italian J. Biochem., 35:131A-132A.Google Scholar
  67. 67.
    Oshiro, Y., and Eylar, E. H. 1970. Allergic encephalomyelitis: A comparison of the encephalitogenic A1 protein from human and bovine brain. Biochim. Biophys. Acta, 138:606–613.Google Scholar
  68. 68.
    Anthony, J. S., and Moscarello, M. A. 1971. A conformation change induced in the basic encephalitogen by lipids. Biochim. Biophys. Acta, 243:429–433.PubMedGoogle Scholar
  69. 69.
    Block, R. E., Brady, A. H., and Joffe, S. 1973. Conformation and aggregation of bovine myelin protein. Biochem. Biophys. Res. Comm. 54:1595–1602.PubMedGoogle Scholar
  70. 70.
    Inouye, H., and Kirschner, D. A. 1990. Folding and function of the myelin proteins from primary sequence data. J. Neurosci. Res., 28:1–17.Google Scholar
  71. 71.
    Martenson, R., 1991. Myelin basic protein isoforms: structural/evolutionary implications. Trans. Am. Soc. Neurochem., 22:158.Google Scholar
  72. 72.
    Riccio, P., Rosenbusch, J. P., and Quagliariello, E. 1984. A new procedure for isolation of the brain-basic myelin basic protein in a lipid-bound form. FEBS Letters, 177:236–240.PubMedGoogle Scholar
  73. 73.
    Surewicz, W. K., Moscarello, M. A., and Mantsch, H. 1987. Fourier transform infrared spectroscopic investigation of the interaction between myelin basic protein and dimyristoylphosphatidylglycerol bilayers. Biochemistry, 26:3881–3886.PubMedGoogle Scholar
  74. 74.
    Nicot, C., Vacher, M., Vincent, M., Gallay, J., and Waks, M. 1985. Membrane proteins in reverse micelles: myelin basic protein in a membrane-mimetic environment. Biochemistry, 24:7025–7032.Google Scholar
  75. 75.
    Waks, M. 1986. Protein and peptides in water-restricted environment. Proteins: Structure, Function and Genetics, 1:4–15.Google Scholar
  76. 76.
    Swann, R. W., and Li, C. H. 1979. Characterization of turkey myelin basic protein. Int. J. Pept. Prot. Res., 14:495–503.Google Scholar
  77. 77.
    Ulmer, J. B. and Braun, P. E. 1987. Chloroform markedly stimulates the phosphorylation of myelin basic protein. Biochem. Biophys. Res. Comm., 146:1084–1088.PubMedGoogle Scholar
  78. 78.
    Hinman, C. L., Rauch, H. C., and Pfeifer, R. F. 1982. Application of high performance liquid chromatography to the preparation of encephalitogenic myelin basic protein. Life Sci., 30:989–993.PubMedGoogle Scholar
  79. 79.
    Gonzalez-Sastre, F. 1970. The protein composition of isolated myelin. J. Neurochem., 176:1049–1056.Google Scholar
  80. 80.
    Poole, P. L., and Finney, J. L. 1983. Hydration-induced conformational and flexibility changes in lysozymes at low water content. Int. Biol. Macromol., 5:308–310.Google Scholar
  81. 81.
    Richardson, J. S., Getzoff, E. D., and Richardson, D. C. 1978. The β-bulge: A common small unit of nonrepetitive protein structure, Proc. Natl. Acad. Sci. (USA), 75:2574–2578.Google Scholar
  82. 82.
    Vyas, N. K., Vyas, M. N., and Quicho, F. A. 1978. A novel calcium binding site in galactose-binding protein of bacterial transport and chemotaxis. Nature, 327:635–638.Google Scholar
  83. 83.
    Schellman, C. 1980. The αL at the ends of helices. Pages 53–64,in Jaenicke, R., (ed.), Protein Folding, Amsterdam, New York, Elsevier/North Holland Biomedical Press.Google Scholar
  84. 84.
    Dreusicke, D., and Schulz, G. E. 1986. The glycine-rich loop of adenylate kinase forms a giant anion hole. FEBS Lett., 208:301–304.PubMedGoogle Scholar
  85. 85.
    Jirgensons, B., and Hnilica, L. 1965. The conformational changes of calf-thymus histone fractions as determined by the optical rotatory dispersion. Biochim. Biophys. Acta., 109:241–249.PubMedGoogle Scholar
  86. 86.
    Goto, Y., and Fink, A. L. 1989. Conformation states of B-lactamase: molten-globule states at acidic and alkaline pH with high salt. Biochemistry, 28:945–952.PubMedGoogle Scholar
  87. 87.
    Williams, T. Marumo, K., Waite, J. H., and Henkens, R. W. 1989. Mussel glue protein has an open conformation. Archiv. Biochem. Biophys., 269:415–422.Google Scholar
  88. 88.
    Stellwagen, E., Rysawy, R., and Babul, G. 1982. The conformation of horse heart apocytochrome c. J. Biol. Chem., 247:8074–8077.Google Scholar
  89. 89.
    Fisher, W. R., Taniuchi, H., and Anfinsen, C. B. 1973. On the role of heme in the formation the structure cytochrome c. J. Biol. Chem., 248:3188–3195.PubMedGoogle Scholar
  90. 90.
    Snape, K. W., Tijian, R., Blake, C. C. F., and Koshland, D. E. 1974. Crystallographic study of interaction of urea with lysozyme. Nature, 250:295–298.PubMedGoogle Scholar
  91. 91.
    Epand, R. M., and Stahl, G. L. 1987. Interaction of atropeptin III with lipids and detergents. Int. J. Pept. Protein Res., 29:238–243.PubMedGoogle Scholar
  92. 92.
    Blundell, T. L., and Wood, S. 1987. The conformation, flexibility and dynamics of polypeptide hormones. Annu. Rev. Biochem., 51:123–134.Google Scholar
  93. 93.
    Lee, N. M., Wu, C.-S.C., Yang, J. T., Loh, H. H. and Li, C. H. 1980. Circular dichroic study of β-endorphin conformation induced by membrane acidic lipids. Pages 285–290,in Costa, E., and Trabucchi, M. (eds.), Neural Peptides and Neuronal Communication, Raven Pres, New York.Google Scholar
  94. 94.
    Lichtarge, O., Jardetzky O. and Li, C. H. 1987. Secondary structure determination of human β-endorphin by1H NMR spectroscopy. Biochemistry, 26:5916–5925.PubMedGoogle Scholar
  95. 95.
    Carver, J. A. 1987. The conformation of bombesin in solution as determined by two dimensional1H NMR technique. Eur. J. Biochem., 168:193–199.PubMedGoogle Scholar
  96. 96.
    Vos de, A. M., Hatada, M., Van der Wel, H., Krabbendam, H., Peerdemn, A. F., and Kim, S. H. 1985. Three-dimensional structure of thaumatin I, an intensely sweet protein. Proc. Natl. Acad. Sci. USA, 82:1406–1409.PubMedGoogle Scholar
  97. 97.
    Yonath, A., 1989. Crystallization and crystallographic studies on ribosomal particles. Abstracts of the Third International Conference on Crystallization of Biological Macromolecules. Washington, D.C., August 13–19, p. 17.Google Scholar
  98. 98.
    Spangler, B. R. and Westbrook, E. M., 1991. Isolation of isoelectrically pure cholera toxin for crystallization. J. Cryst. Growth 110:220–227.Google Scholar
  99. 99.
    Smith, R. 1982. Self-association of myelin basic protein: Enhancement by detergents and lipids. Biochemistry, 21:2697–2702.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Jan Sedzik
    • 1
    • 2
  • Daniel A. Kirschner
    • 1
    • 2
  1. 1.Division of Neurology Research, The Children's HospitalHarvard Medical SchoolBoston
  2. 2.Department of NeuropathologyHarvard Medical SchoolBoston

Personalised recommendations