Neurochemical Research

, Volume 16, Issue 3, pp 279–284 | Cite as

Anoxic block of GABAergic IPSPs

  • K. Krnjević
  • Y. Z. Xu
  • L. Zhang
Original Articles

Abstract

In rat hippocampal slices GABAergic IPSPs are very rapidly suppressed by anoxia (in<2 min). Both early (GABAA) and late (GABAB) components are affected. After reoxygenation, the IPSPs recover, but only slowly and not always completely. Iontophoretic applications of GABA or baclofen indicated no major depression of responses during anoxia. It is therefore unlikely that the anoxic suppression of IPSPs is caused by desensitizations of GABA receptors. A more probable explanation is a failure of GABAergic neurons to release GABA from inhibitory nerve terminals.

Key Words

Anoxia inhibitory synaptic potentials (IPSP) GABA baclofen hippocampus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roberts, E., and Frankel, S. 1950. γ-Aminobutyric acid in brain: its formation from glutamic acid. J. Biol. Chem. 187:55–63.PubMedGoogle Scholar
  2. 2.
    Krnjević, K., and Schwartz, S. 1967. The action of γ-aminobutyric acid on cortical neurones. Exp. Brain Res. 3:320–336.PubMedGoogle Scholar
  3. 3.
    Dreifuss, J. J., Kelly, J. S., and Krnjević, K. 1969. Cortical inhibition and γ-aminobutyric acid. Exp. Brain Res. 9:137–154.PubMedGoogle Scholar
  4. 4.
    Roberts, E. 1976. Immunocytochemistry of the GABA system—a novel approach to an old transmitter. Pages 123–138,in Ferrendelli, J. A., McEwen, B. S., and Snyder, S. H. (eds.) Neurotransmitters, Hormones and Receptors: Novel Approaches, Society of Neuroscience, Bethesda, Maryland.Google Scholar
  5. 5.
    Fujiwara, H., Higashi, H., Shimoji, K., and Yoshimura, M. 1987. Effects of hypoxia on rat hippocampal neurones in vitro. J. Physiol. 384:131–151.PubMedGoogle Scholar
  6. 6.
    Leblond, J., and Krnjević, K. 1989. Hypoxic changes in hippocampal neurons. J. Neurophysiol. 62:1–14.PubMedGoogle Scholar
  7. 7.
    Inoue, M., Oomura, Y., Yakushiji, T., and Akaike, N. 1986. Intracellular calcium ions decrease the affinity of the GABA receptor. Nature 324:156–158.PubMedGoogle Scholar
  8. 8.
    Akaike, N., Oyama, Y., and Tokutomi, N. 1988. Inhibition of drug-gated chloride currents by calcium influx in frog sensory neurons. Neuroscience Res. 5:557–562.Google Scholar
  9. 9.
    Stelzer, A., Kay, A. R., and Wong, R. K. S. 1988. GABAA-receptor function in hippocampal cells is maintained by phosphorylation factors. Science 241:339–341.PubMedGoogle Scholar
  10. 10.
    Krnjević, K. 1975. Coupling of neuronal metabolism and electrical activity. Pages 65–78,in Ingvar, D. H., and Lassen, N. A. (eds.), Brain Work: The Coupling of Function, Metabolism and Blood Flow in the Brain, Munsgaard, Copenhagen.Google Scholar
  11. 11.
    Krnjević, K., and Xu, Y. 1989. Dantrolene suppresses the hyperpolarization or outward current observed during anoxia in hipocampal neurons. Can. J. Physiol. Pharmacol. 67:1602–1604.PubMedGoogle Scholar
  12. 12.
    Duchen, M. R., Valdeolmillos, M., O'Neill, S. C., and Eisner, D. A. 1990. Effects of metabolic blockade on the regulation of intracellular calcium in dissociated mouse sensory neurones. J. Physiol. 424:411–426.PubMedGoogle Scholar
  13. 13.
    Fox, S., Krnjević, K., Morris, M. E., Puil, E., and Werman, R. 1978. Action of baclofen on mammalian synaptic transmission. Neuroscience 3:495–515.PubMedGoogle Scholar
  14. 14.
    Bormann, J. 1988. Electrophysiology of GABAA and GABAB receptor subtypes. TINS 11:112–116.PubMedGoogle Scholar
  15. 15.
    Bowery, N.G., Hill, D.R., and Moratalla, R. 1989. Neurochemistry and autoradiography of GABAB receptors in mammalian brain: Second-messenger system(s). Pages 159–172, in Barnard, E. A., and Costa, E. (eds.), Allosteric Modulation of Amino Acid Receptors: Therapeutic Implications, Raven Press Ltd., New York.Google Scholar
  16. 16.
    Newberry, N.R., and Nicoll, R.A. 1984. A bicuculline-resistant inhibitory post-synaptic potential in rat hippocampal pyramidal cells in vitro. J. Physiol. 348:239–254.PubMedGoogle Scholar
  17. 17.
    Lambert, N.A., Harrison, N.L., Kerr, D.I.B., Ong, J., Prager, R.H., and Teyler, T.J. 1989. Blockade of the late IPSP in rat CA1 hippocampal neurons by 2-hydroxy-saclofen. Neurosci. Letts. 107:125–128.Google Scholar
  18. 18.
    Gallagher, J.P., Nakamura, J., and Shinnick-Gallagher, P. 1983. The effects of temperature, pH and C1-pump inhibitors on GABA responses recorded from cat dorsal root ganglia. Brain Res. 267: 249–259.PubMedGoogle Scholar
  19. 19.
    Krnjević, K., and Walz, W. 1990. Acidosis and blockade of orthodromic responses caused by anoxia in rat hippocampal slices, at different temperatures. J. Physiol. 422:127–144.PubMedGoogle Scholar
  20. 20.
    Stelzer, A., and Wong, R.K.S. 1989. GABAA responses in hippocampal neurons are potentiated by glutamate. Nature 337:170–173.PubMedGoogle Scholar
  21. 21.
    Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N.H. 1984. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43:1369–1374.PubMedGoogle Scholar
  22. 22.
    Krnjević, K. and Xu, Y. (1990). Mechanisms underlying anoxic hyperpolarization of hippocampal neurons. Can. J. Physiol. Pharmacol., 68:1609–1613.PubMedGoogle Scholar
  23. 23.
    Cherubini, E., Ben-Ari, Y., and Krnjević, K. 1989. Anoxia produces smaller changes in synaptic transmission, membrane potential, and input resistance in immature rat hippocampus. J. Neurophysiol. 62:882–895.PubMedGoogle Scholar
  24. 24.
    Krnjević, K., and Leblond, J. 1989. Changes in membrane currents of hippocampal neurons evoked by brief anoxia. J. Neurophysiol. 62:15–30.PubMedGoogle Scholar
  25. 25.
    Ben-Ari, Y., and Cherubini, E. 1988. Brief anoxic episodes induce long-lasting changes in synaptic properties of rat CA3 hippocampal neurons. Neurosci. Letts. 90:273–278.Google Scholar
  26. 26.
    Sloper, J.J., Johnson, P., and Powell, T.P.S. 1980. Selective degeneration of interneurons in the motor cortex of infant monkeys following controlled hypoxia: A possible cause of epilepsy. Brain Res. 198:204–209.PubMedGoogle Scholar
  27. 27.
    Pulsinelli, W.A. 1985. Selective neuronal vulnerability: morphological and molecular characteristics. Prog. Brain Res. 63:29–37.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • K. Krnjević
    • 1
    • 2
  • Y. Z. Xu
    • 3
  • L. Zhang
    • 4
  1. 1.Anaesthesia Research DepartmentMcGill UniversityMontréalCanada
  2. 2.McIntyre Centre for Medical SciencesMontréalCanada
  3. 3.Department of BiologyUniversity of Science and Technology, of ChinaHefeiChina
  4. 4.Playfair Neuroscience UnitToronto Western HospitalToronto

Personalised recommendations