Neurochemical Research

, Volume 16, Issue 9, pp 1059–1065

Concerted regulation of protein phosphorylation and dephosphorylation by calmodulin

  • Claude B. Klee
Original Articles

Abstract

The multiple functions of calmodulin in brain bring to light an apparent paradox in the mechanism of action of this multifunctional regulatory protein: How can the simultaneous calmodulin stimulation of enzymes with opposing functions such as cyclic nucleotide phosphodiesterases and adenylate cyclase, which are responsible for the degradation and synthesis of cAMP, respectively, be physiologically significant? The same question applies to the simultaneous activation of protein kinases (in particular calmodulin kinase II) and a protein phosphatase (calcineurin). One could propose that the protein kinase(s) and the phosphatase may be located in different cells or in different cellular compartments, and are therefore not antagonizing each other. The same result could be achieved if the specific substrates of these enzymes have different cellular localizations. This does not seem to be the case. In many areas of the brain the two enzymes and their substrates coexist in the same cell. For example, the hippocampus is rich in calmodulin kinase II, calcineruin and substrates for the two enzymes. A more general scheme is presented here, based on different mechanisms of the calmodulin regulation of the two classes of enzyme, which helps to solve this apparent inconsistency in the mechanism of action of calmodulin.

Key Words

Calmodulin kinase calcineurin phosphatase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Molecular. Aspects of Cellular Regulation 1988. Calmodulin. P. Cohen and C. B. Klee (eds.) vol. 5. Elsevier, Amsterdam.Google Scholar
  2. 2.
    Lukas, T. J., Haiech, J., Lau, W., Craig, T. A., Zimmer, W. E., Schattuck, R. L., Shoemaker, W. O., and Watterson, D. M. 1988. Calmodulin and calmodulin-regulated protein kinases as transducers of intracellular calcium signals. Cold Spring Harbor Symposia on Quantitative Biol. 53:788–795.Google Scholar
  3. 3.
    Bredt, D. S. and Snyder, S. H. 1990. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. U.S.A. 87:682–685.Google Scholar
  4. 4.
    Forstermann, U., Pollock, J. S., Schmidt, H. H. W., Heller, M., and Murad, F. 1991. Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 88:1788–1792.Google Scholar
  5. 5.
    Snyder, S. H., and Bredt, D. S. 1991. Nitric Oxide as a Neuronal Messenger. Trends Pharmacol. Sci. in press.Google Scholar
  6. 6.
    Biden, T. J., Comte, M., Cox, J. A., and Wollheim, C. B. 1987. Calcium-Calmodulin stimulates Inositol 1,4,5-Trisphosphate Kinase Activity from Insulin-Secreting RINm5F cells. J. Biol. Chem. 262:9437–9440.Google Scholar
  7. 7.
    Ryu, S. H., Lee, S. Y., and Rhee, S.-G. 1987. Catalytic Properties of inositol trisphosphate kinase: activation by Ca2+ and calmodulin. FASEB J. 1:388–393.Google Scholar
  8. 8.
    Morris, A. J., Downes, C. P., Harden, T. K., and Michell, R. H. 1987. Turkey erythrocytes possess a membrane-associated inositol 1,4,5-trisphosphate 3-kinase that is activated by Ca2+ in the presence of calmodulin. Biochem. J. 248:489–493.Google Scholar
  9. 9.
    Stull, J. T., Nunally, M. H., and Michnoff, C. H. 1986. Calmodulin-dependent protein kinase. in The Enxymes, XVIII 113–166 Academic Press.Google Scholar
  10. 10.
    Blackshear, P. J., Nairn, A. C., and Kuo J. F. 1988. Protein Kinases 1988 — A current perspective. FASEB J. 2:2957–2969.Google Scholar
  11. 11.
    Nairn, A. C. 1990. Role of Ca2+/calmodulin-dependent protein phosphorylation in signal transduction. Adv. Second Messenger Phosphoprotein Res. 24:202–205.Google Scholar
  12. 12.
    Schulman, H. and Lou, L. L. 1989. Multifunctional Ca2+/calmodulin-dependent protein kinase: domain structure and regulation. Trends Biochem. Sci. 14:62–66.Google Scholar
  13. 13.
    Colbran, R. J., and Soderling, T. R. 1990. Calcium/Calmodulin-Dependent Protein Kinase II Curr. Top. Cell. Regul. 31:181–221.Google Scholar
  14. 14.
    Okuno, S., Kanayama, Y., and Fujisawa, H. 1989. Regulation of tyrosine hydroxylase activity. Effects of cAMP-dependent protein kinase, calmodulin-dependent kinase II and polyanion. FEBS Lett. 253:52–54.Google Scholar
  15. 15.
    Lin, J.-W., Sugimori, M., Llinas, R. R., McGuiness, T. L., and Greengard, P. 1990. Effects of synapsin I and calcium/calmodulin-dependent protein kinase II on spontaneous neurotransmitter release in the squid giant synapse. Proc. Natl. Acad. Sci. USA. 87:8257–8261.Google Scholar
  16. 16.
    Malinow, R., Schulman, H., and Tsien, R. 1989. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science. 245:862–866.Google Scholar
  17. 17.
    Yamauchi, T., Ohsako, S., and Deguchi, T. 1989. Expression and characterization of calmodulin-dependent protein kinase II from cloned cDNAs in Chinese hamster ovary cells. J. Biol. Chem. 264:19108–19116.Google Scholar
  18. 18.
    Ohsako, S., Watanabe, A., Sekihara, S-i, Ikai, A., and Yamauchi, T. 1990. Expression of a catalytically active polypeptide of calmodulin-dependent protein kinase II subunit inE. coli. Biochem. Biophys. Res. Commun. 170:705–712.Google Scholar
  19. 19.
    Kwiatowski, A. P., and King, M. M. 1987. Mapping of the adenosine 5′-triphosphate binding site of type II calmodulin-dependent protein kinase. Biochemistry 26:7636–7642.Google Scholar
  20. 20.
    Bennett, M. K., and Kennedy, M. B. 1987. Deduced primary structure of the β subunit of brain type II Ca2+/calmodulin-dependent protein kinase determined by molecular cloning. Proc. Natl. Acad. Sci. USA. 1987:1794–1798.Google Scholar
  21. 21.
    Hanley, R. M., Means, A. R., Kemp, B. E., and Shenolikar, S. 1988. Mapping of calmodulin-binding domain of Ca2+/calmodulin-dependent protein kinase II from rat brain. Biochem. Biophys. Res. Commun. 152:122–128.Google Scholar
  22. 22.
    Payne, M. E., Fong, Y-L., Ono, T., Colbran, R. J., Kemp, B. E., Soderling, T. R., and Means, A. R. 1988. Calcium/Calmodulin-dependent Protein Kinase II. J. Biol. Chem. 263:7190–7195.Google Scholar
  23. 23.
    Lai, Y., Nairn, A. C., Gorelick, F., and Greengard, P. 1987. Ca2+/stimulate cAMP-dependent kinase/calmodulin-dependent protein kinase II: identification of autophosphorylation sites responsible for generation of Ca2+/calmodulin independence. Proc. Natl. Acad. Sci. USA. 84:5710–5714.Google Scholar
  24. 24.
    Lou, L. L., and Schulman, H. 1989. Distinct autophosphorylation sites sequentially produce autonomy and inhibition of the multifunctional Ca2+/calmodulin-dependent protein kinase. J. Neurosci. 453:2020–2032.Google Scholar
  25. 25.
    Hanson, P. I., Kapiloff, M. S., Lou, L. L., Rosenfeld, M. G., and Schulman, H. 1989. Expression of multifunctional Ca2+/calmodulin-dependent kinase and mutational analysis of its autoregulation. Neuron. 3:59–70.Google Scholar
  26. 26.
    Patton, B. L., Miller, S. G., and Kennedy, M. B. 1990. Activation of type II Calcium/calmodulin-dependent protein kinase by Ca2+/calmodulin is inhibited by autophosphorylation of threonine within the calmodulin-binding domain. J. Biol. Chem. 265:11204–11212.Google Scholar
  27. 27.
    Colbran, R. J., and Soderling, T. R. 1990. Calcium/calmodulin-independent autophosphorylation sites of calcium/calmodulin-dependent protein kinase II. Studies on the effect of phosphorylation of threonine 305/306 and serine 314 on calmodulin binding using synthetic peptides. J. Biol. Chem. 265:11213–1129.Google Scholar
  28. 28.
    Kennedy, M. B. Bennett, M. K., Erondu, N. E., and Miller, S. G. 1987. Pages 61–107,in W. Y. Cheung (ed.), Calcium and Cell Function, vol. VII. Academic Press.Google Scholar
  29. 29.
    LeVine, H. III, Sahyoun, N. E., and Cuatrecasas, P. 1986. Binding of calmodulin to the neuronal cytoskeletal protein kinase type II cooperatively stimulates autophosphorylation. Proc. Natl. Acad. Sci. USA. 83:2253–2257.Google Scholar
  30. 30.
    Waxham, M. N., Aronowski, J., Westgate, S. A., and Kelly, P. T. 1990. Mutagenesis of Thr-286 in monomeric Ca2+/calmodulin-dependent protein kinase II eliminates Ca2+/calmodulin-independent activity. Proc. Natl. Acad. Sci. USA 87:1273–1277.Google Scholar
  31. 31.
    Fong, Y.L., Taylor, W. L., Means, A. R., and Soderling, T. R. 1989. Studies of the regulatory mechanism of Ca2+/calmodulin dependent protein kinase II. Mutation of theonine 286 to alanine and aspartate. J. Biol. Chem. 264:16759–16763.Google Scholar
  32. 32.
    Levine, H. III, and Sayoun, N. E. 1987. Characterization of a soluble Mr-30,000 catalytic fragment of the neuronal calmodulin-dependent protein kinase II. Eur. J. Biochem. 168:481–486.Google Scholar
  33. 33.
    Kwiatkowski, A. P., and King, M. M. 1989. Autophosphorylation of the type II calmodulin-dependent protein kinase is essential for formation of a proteolytic fragment with catalytic activity. Biochemistry 28:5380–5385.Google Scholar
  34. 34.
    Klee, C. B., Draetta, G. F., and Hubbard, M. J. 1988. Calcineurin. Adv. Enzymol. 61:149–200.Google Scholar
  35. 35.
    Guerini, D. and Klee, C. B. 1991. Structural Diversity of Calcineurin, a Ca2+ and Calmodulin Stimulated protein Phosphatase. Adv. Prot. Phosphatases. 6:in press.Google Scholar
  36. 36.
    Goto, S., Matsukado, Y., Mihara, Y. et al. 1986. The distribution of calcineurin in rat brain and its relation to extrapyramidal system. Brain Res. 397:161–172.Google Scholar
  37. 37.
    Hemmings, H. C. Jr., and Greengard, P. 1986. DARPP-32, a dopamine-regulated phosphoprotein. Prog. Brain, Res. 69:149–159.Google Scholar
  38. 38.
    Halpain, S., Girault, J-A. and Greengard, P., 1990. Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices. Nature 343:369–372.Google Scholar
  39. 39.
    Kuno, T., Takeda, T., Hirai, M., Itao, A., Mukai, H. and Tanaka, C. 1989. Evidence for a second isoform of the catalytic subunit of calmodulin-dependent protein phosphatase (calcineurin A). Biochem. Biophys. Res. Commun. 165:1352–1358.Google Scholar
  40. 40.
    Kincaid, R. L., Giri, P. R., Higuchi, S., Tamura, J., Dixon, S. C., Marietta, C. H., Amorese, D. A., and Martin, B. M. 1990 Cloning and Characterization of Molecular Isoforms of the Catalytic Subunit of Calcineurin Using Nonisotopic Methods. J. Biol. Chem. 265:11312–11319.Google Scholar
  41. 41.
    McParlin, A. E., Barker, H. M., and Cohen, P. T. W. 1991. Identification of a third alternatively spliced cDNA encoding the catalytic subunit of protein phosphatase 2Bβ. Biochim. Biophys. Acta 1088:308–310.Google Scholar
  42. 42.
    Hubbard, M. J., and Klee, C. B. 1989. Functional Domain Structure of calcineurin A: Mapping by limited proteolysis. Biochemistry 28:1868–1874.Google Scholar
  43. 43.
    Hashimoto, Y., Perrino, B. A., and Soderling, T. R. 1990. Identification of an autoinhibitory domain of calcineurin. J. Biol. Chem. 265:1924–1927.Google Scholar
  44. 44.
    Kincaid, R. L., Nightingale, M. S., and Martin, B. M. 1988. Characterization of a cDNA clone encoding the calmodulin-binding domain of mouse brain calcineurin. Proc. Natl. Acad. Sci. USA. 86:9183–9187.Google Scholar
  45. 45.
    Hubbard, M. J., and Klee, C. B. 1989. Calmodulin binding by calcineurin. J. Biol. Chem. 262:15062–15070.Google Scholar
  46. 46.
    Ingerbritsen, T. S. and Cohen, P. 1983. Protein phosphatases: properties and role in cellular regulation. Science 221:331–338.Google Scholar
  47. 47.
    Sharma, R. K., Mooibroek, M., and Wang, J. H. 1988. Calmodulin-stimulated cyclic nucleotide phosphodiesterase isozymes.In P. Cohen and C. B. Klee (eds.), Molecular. Aspects of Cellular Regulation. 5:265–292.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Claude B. Klee
    • 1
  1. 1.Laboratory of Biochemistry, National Cancer InstituteNational Institutes of HealthBethesda

Personalised recommendations