Neurochemical Research

, Volume 7, Issue 6, pp 771–788 | Cite as

Protein synthesis and transport in the regenerating goldfish visual system

  • Anne M. Heacock
  • Bernard W. Agranoff
Original Articles

Abstract

The nature of the proteins synthesized in the goldfish retina and axonally transported to the tectum during optic nerve regeneration has been examined. Electrophoretic analysis of labeled soluble retinal proteins by fluorography verified our previous observation of a greatly enhanced synthesis of the microtubule subunits. In addition, labeling of a tubulin-like protein in the retinal particulate fraction was also increased during regeneration. Like soluble tubulin, the particulate material had an apparent MW of 53–55K and could be tyrosylated in the presence of cycloheximide and [3H]tyrosine. Comparison of post-crush and normal retinal proteins by two-dimensional gel electrophoresis also revealed a marked enhancement in the labeling of two acidic 68–70K proteins. Analysis of proteins slowly transported to the optic tectum revealed changes following nerve crush similar to those observed in the retina, with enhanced labeling of both soluble and particulate tubulin and of 68–70K polypeptides. The most striking change in the profile of rapidly transported protein was the appearance of a labeled 45K protein which was barely detectable in control fish.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jacobson, M. 1978. Developmental neurobiology, Plenum Press, New York.Google Scholar
  2. 2.
    Murray, M. 1973. [3H]Uridine incorporation by regenerating retinal ganglion cells of goldfish. Exp. Neurol. 39:489–497.Google Scholar
  3. 3.
    Burrell, H. R., Dokas, L. A., andAgranoff, B. W. 1978. RNA metabolism in the goldfish retina during optic nerve regeneration. J. Neurochem. 31:289–298.Google Scholar
  4. 4.
    Dokas, L. A., Kohsaka, S., Burrell, H. R., andAgranoff, B. W. 1981. Uridine metabolism in the goldfish retina during opitc nerve regeneration: Whole retina studies. J. Neurochem. 36:1160–1165.Google Scholar
  5. 5.
    Murray, M., andGrafstein, B. 1969. Changes in the morphology and amino acid incorporation of regenerating goldfish optic neurons. Exp. Neurol. 23:544–560.Google Scholar
  6. 6.
    Heacock, A. M., andAgranoff, B. W. 1976. Enhanced labeling of retinal protein during regeneration of optic nerve in goldfish. Proc. Natl. Acad. Sci. U.S.A. 73:828–832.Google Scholar
  7. 7.
    Giulian, D., DesRuisseaux, H., andCowburn, D. 1980. Biosynthesis and intra-axonal transport of proteins during neuronal regeneration. J. Biol. Chem. 255:6494–6501.Google Scholar
  8. 8.
    Grafstein, B., andMurray, M. 1969. Transport of protein in goldfish optic nerve during regeneration. Exp. Neurol. 25:494–508.Google Scholar
  9. 9.
    Skene, J. H. P., andWillard, M. 1981. Changes in axonally transported proteins during regeneration in toad retinal ganglion cells. J. Cell Biol. 89:86–95.Google Scholar
  10. 10.
    Skene, J. H. P., andWillard, M. 1981. Axonally transported proteins associated with growth in rabbit central and peripheral nervous system. J. Cell Biol. 89:96–103.Google Scholar
  11. 11.
    Benowitz, L. I., Shashoua, V. E., andYoon, M. G. 1981. Specific changes in rapidly transported proteins during regeneration of the goldfish optic nerve. J. Neuroscience 1:300–307.Google Scholar
  12. 12.
    Heacock, A. M., Burrell, H. R., andAgranoff, B. W. 1978. Further studies of the biochemical consequences of optic nerve crush in the goldfish. Neurosci. Abstr. 4:1706.Google Scholar
  13. 13.
    Dunlop, D. S., Van Elden, W., andLajtha, A. 1974. Measurement of rates of protein synthesis in rat brain slices. J. Neurochem. 22:821–830.Google Scholar
  14. 14.
    O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007–4021.Google Scholar
  15. 15.
    Bonner, W. M., andLaskey, R. A. 1974. A film detection method for tritium-labeled proteins and nucleic acids in polyacrylamide gels. Eur. J. Biochem. 46:83–88.Google Scholar
  16. 16.
    Mans, P. J., andNovelli, G. D. 1961. Measurement of the incorporation of radioactive amino acids into protein by a filter paper method. Arch. Biochem. 94:48–53.Google Scholar
  17. 17.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.Google Scholar
  18. 18.
    Czosnek, H., Soifer, D. andWisniewski, H. M. 1980. Heterogeneity of intermediate filament proteins from rabbit spinal cord. Neurochem. Res. 5:777–793.Google Scholar
  19. 19.
    Elam, J. S., andAgranoff, B. W. 1971. Rapid transport of protein in the optic system of the goldfish. J. Neurochem. 18:375–387.Google Scholar
  20. 20.
    Springer, A. D. andAgranoff, B. W. 1977. Effects of temperature on rate of goldfish optic nerve regeneration: A radioautographic and behavioral study. Brain Res. 128:405–415.Google Scholar
  21. 21.
    Neale, J. H., Elam, J. S., Neale, E. A., andAgranoff, B. W. 1974. Axonal transport and turnover of proline- and leucine-labeled protein in the goldfish visual system. J. Neurochem. 23:1045–1055.Google Scholar
  22. 22.
    Heacock, A. M., andAgranoff, B. W. 1977. Reutilization of precursor following axonal transport of [3H]proline-labeled protein. Brain Res. 122:243–254.Google Scholar
  23. 23.
    Feit, H., andShay, J. W. 1980. The assembly of tubulin into membranes. Biochem. Biophys. Res. Commun. 94:324–331.Google Scholar
  24. 24.
    Shelanski, M. 1974 Methods for neurochemical study of microtubules. Pages 281–300,in Mark, N. andRodnight, R. (eds.), Research Methods in Neurochemistry, 2, Plenum Press, New York.Google Scholar
  25. 25.
    Barra, H. S., Arce, C. A., Rodriguez, J. A., andCaputto, R. 1974. Some common properties of the protein that incorporates tyrosine as a single unit and the microtubule proteins. Biochem. Biophys. Res. Commun. 60:1384–1390.Google Scholar
  26. 26.
    Raybin, D., andFlavin, M. 1975. An enzyme tyrosylating α-tubulin and its role in microtubule assembly. Biochem. Biophys. Res. Commun. 65:1088–1095.Google Scholar
  27. 27.
    Hoffman, P. N., andLasek, R. J. 1975. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J. Cell Biol. 66:351–366.Google Scholar
  28. 28.
    Autilio-Gambetti, L., Velasco, M. E., Sipple, J., andGambetti, P. 1981. Immunochemical characterization of antisera to rat neurofilament subunits. J. Neurochem. 37:1260–1265.Google Scholar
  29. 29.
    Duerr, A., Pallas, D., andSolomon, F. 1981. Molecular analysis of cytoplasmic microtubules in situ: Identification of both widespread and specific proteins. Cell 24:203–211.Google Scholar
  30. 30.
    Hoffman, P. N., andLasek, R. J. 1980. Axonal transport of the cytoskeleton in regenerating motor neurons: Constancy and change. Brain Res. 202:317–333.Google Scholar
  31. 31.
    Lasek, R. J., andBlack, M. M. 1977. How do axons stop growing? Some clues from the metabolism of the proteins in the slow component of axonal transport. Pages 161–169,in Roberts, S., Lajtha, A., andGispen, W. H., (eds.), Metabolism, Regulation and Special Functions of Protein Synthesis in the Brain, Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  32. 32.
    Bhattacharyya, B., andWolff, J. 1975. Membrane-bound tubulin in brain and thyroid tissue. J. Biol. Chem. 250:7639–7646.Google Scholar
  33. 33.
    Strocchi, P., Brown, B. A., Young, J. D., Bonventre, J. A., andGilbert, J. M. 1981. The characterization of tubulin in CNS membrane fractions. J. Neurochem. 37:1295–1307.Google Scholar
  34. 34.
    Kelly, P. T., andCotman, C. W. 1978. Synaptic proteins: Characterization of tubulin and actin and identification of a distinct postsynaptic density polypeptide. J. Cell Biol. 79:173–183.Google Scholar
  35. 35.
    Zisapel, N., Levi, M., andGozes, I. 1980. Tubulin: An integral protein of mammalian synaptic vesicle membranes. J. Neurochem. 34:26–32.Google Scholar
  36. 36.
    Estridge, M. 1977. Polypeptides similar to the α and β subunits of tubulin are exposed on the neuronal surface. Nature 268:60–63.Google Scholar
  37. 37.
    Burrell, H. R., Heacock, A. M., Water, R. D., andAranoff, B. W. 1979. Increased tubulin messenger RNA in the goldfish retina during optic nerve regeneration. Brain Res. 168:628–632.Google Scholar
  38. 38.
    Edelman, G. M. 1976. Surface modulation in cell recognition and cell growth. Science 192:218–226.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Anne M. Heacock
    • 1
  • Bernard W. Agranoff
    • 1
  1. 1.The University of MichiganAnn Arbor

Personalised recommendations