Neurochemical Research

, Volume 19, Issue 9, pp 1131–1137 | Cite as

Evidence of an oxidative challenge in the Alzheimer's brain

  • Louisa Balazs
  • Michael Leon
Original Articles

Abstract

Alzheimer's disease may arise from or produce oxidative damage in the brain. To assess the responses of the Alzheimer's brain to possible oxidative challenges, we assayed for glutathione, glucose-6-phosphate dehydrogenase, catalase and superoxide dismutase in twelve regions of Alzheimer's disease and aged control brains. In addition, we determined levels of malondialdehyde to evaluate lipid peroxidation in these brain regions. Most brain regions showed evidence of a response to an oxidative challenge, but the cellular response to this challenge differed among brain regions. These data suggest that the entire Alzheimer's brain may be subject to an oxidative challenge, but that some brain areas may be more vulnerable than others to the consequent neural damage that characterizes the disease.

Key Words

Alzheimer's disease glucose-6-phosphate dehydrogenase glutathione superoxide dismutase catalase malondialdehyde lipid peroxidation 

References

  1. 1.
    Volcier, L., and Crino, P. B. 1990. Involvement of free radicals in dementia of the Alzheimer's type: a hypothesis. Neurobiol. Aging 11:567–571.PubMedGoogle Scholar
  2. 2.
    Freeman, B. A., and J. D. Crapo. 1982. Biology of disease: Free radicals and tissue injury. Lab. Invest. 47:412–426.PubMedGoogle Scholar
  3. 3.
    Haliwell, B., and Gutteridge, J. M. C. 1989. Free Radicals in Biology and Medicine. 2nd ed., Oxford, Clarendon Press.Google Scholar
  4. 4.
    Nohl, H., and Hegner, D. 1978. Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 82:563–567.PubMedGoogle Scholar
  5. 5.
    Davies, K. J. A. 1987. Protein damage and degradation by oxygen radicals. J. Biol. Chem. 262:9895–9901.PubMedGoogle Scholar
  6. 6.
    Lin, W. S., Wong, F., and Anderson, R. 1987. Role of superoxide in radiation-killing of Escherichia coli and in thymine release from thymidine. Biochem. Biophys. Res. Comm. 147:778–786.PubMedGoogle Scholar
  7. 7.
    Melho-Filho, A. C., and Menighini, R. 1984. In vivo formation of single-strand breaks in DNA by hydrogen peroxide is mediated by the Hager-Weiss reaction. Biochim. Biophys. Acta. 781:56–63.PubMedGoogle Scholar
  8. 8.
    Harman, D., Eddy, E. E., and Noffsinger, J. 1976. Free radical theory of aging: Inhibition of amyloidosis in mice after antioxidants; possible mechanism. Amer. Geriatrics Soc. 24:203–210.Google Scholar
  9. 9.
    Blass, J. P., Baker, A. C., Ko, L. W., and Black, R. S. 1990. Induction of Alzheimer antigens by an uncoupler of oxidative phosphorylation. Arch. Neurol. 47:864–869.PubMedGoogle Scholar
  10. 10.
    Ceballos, I., Javoy-Agid, F., Hirsch, E. C., Dumas, S., Kamoun, P. P., Sinet, P. M., and Agid, Y. 1989. Localization of copperzinc superoxide dismutase mRNA in human hippocampus by in situ hybridization. Neurosci. Lett. 105:41–46.PubMedGoogle Scholar
  11. 11.
    Marklund, S. L., Aldolfsson, R., Gottfries, C. G., and Winbald, B. 1985. Superoxide dismutase isoenzymes in normal brains and in brains from patients with dementia of Alzheimer type. J. Neurol. Sci. 67:319–325.PubMedGoogle Scholar
  12. 12.
    Pappolla, M. A., Omar, R. A., Kim, K. S., and Robakis, N. K. 1992. Immunohistochemical evidence of antioxidant stress in Alzheimer's Disease. Am. J. Pathol. 140:621–628.PubMedGoogle Scholar
  13. 13.
    Delacourte, A., Defossez, A., Ceballos, I., Nicole, A., and Sinet, P. M. 1988. Preferential localization of copper/zinc superoxide dismutase in the vulnerable cortical neurons in Alzheimer's disease. Neurosci. Lett. 92:247–253.PubMedGoogle Scholar
  14. 14.
    Chia, L. S., Thompson, J. E., and Moscarello, M. A. 1984. X-ray diffraction evidence for myelin disorder in brain from humans with Alzheimer's disease. Can Biochem. Biophys. Acta Ser. Biomembr. 775:308–312.Google Scholar
  15. 15.
    Subarao, K. V., Richardson, S., and Ang, L. C. 1990. Autopsy samples of Alzheimer's cortex show increased peroxidation in vitro. J. Neurochem. 55:342–345.PubMedGoogle Scholar
  16. 16.
    Hajimohammadreza, I., and Brammer, M. 1990. Brain membrane fludity and lipid peroxidation in Alzheimer's disease. Neurosci. Lett. 112:333–337.PubMedGoogle Scholar
  17. 17.
    Meister, A., and Anderson, M. E. 1983. Glutathione. Ann. Rev. Biochem. 52:711–760.PubMedGoogle Scholar
  18. 18.
    Perry, T. L., Yong, V. W., Bergeron, C., H. S., and Jones, K. 1987. Amino acids, glutathione, and glutathione transferase activity in the brains of patients with Alzheimer's disease. Ann. Neurol. 21:331–336.PubMedGoogle Scholar
  19. 19.
    Adams, J. D., Jr., Klaidman, L. K., Odunze, I. N., Shen, H. C., and Miller, C. A. 1991. Alzheimer's and Parkinson's disease. Brain levels of glutathione, glutathione disulfide, and Vitamin E. Mol. Chem. Neuropathol. 14:213–226.PubMedGoogle Scholar
  20. 20.
    Lehninger, A. L. 1975. Biochemistry. Worth: New York.Google Scholar
  21. 21.
    Kosower, N. S., and Kosower, E. M. 1978. The glutathione status of cells. Int. Rev. Cytol. 54:109–160.PubMedGoogle Scholar
  22. 22.
    Martins, R. N., Harper, C. G., Stokes, G. B., and Masters, C. L. 1986. Increased cerebral glucose-6-phosphate dehydrogenase activity in Alzheimer's disease may reflect oxidative stress. J. Neurochem. 46:1042–1045.PubMedGoogle Scholar
  23. 23.
    Mirra, S. S., Heyman, A., McKeel, D., Sumi, S. M., Crain, B. J., Brownlee, L. M., Vogel, F. S., Hughes, J. P., van Belle, G., and Berg, L. 1991. The consortium to establish a registry for Alzheimer's disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology. 41:479–486.PubMedGoogle Scholar
  24. 24.
    Chan, P. H., and Fishman, R. A. 1980. Transient formation of superoxide radicals in polyunsaturated fatty acid-induced brain swelling. J. Neurochem. 35:1004–1007.PubMedGoogle Scholar
  25. 25.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randal, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265.PubMedGoogle Scholar
  26. 26.
    Cohen, G., Dembiec, D., and Marcus, J. 1970. Measurement of catalase in tissue extracts. Analyt. Biochem. 34:30–38.PubMedGoogle Scholar
  27. 27.
    Marklund, S. 1979. A simple specific method for the determination of the hemoglobin contents of tissue homogenates. Clin. Chim. Acta. 92:229–234.PubMedGoogle Scholar
  28. 28.
    Catalano, E. W., Johnson, G. F., and Solomon, H. M. 1975. Measurement of erythrocyte glucose 6-phosphate dehydrogenase activity with a centrifugal analyzer. Clin. Chem. 21:134–138.PubMedGoogle Scholar
  29. 29.
    Cho, S., and Joshi, J. G. 1988. Effect of long-term feeding of aluminum chloride on hexokinase and glucose 6-phosphate dehydrogenase in the brain. Toxicology 48:61–69.PubMedGoogle Scholar
  30. 30.
    Anderson, M. E. 1985. Determination of glutathione and glutathione disulfide in biological samples. Meth. Enzymol. 113:548–555.PubMedGoogle Scholar
  31. 31.
    Tietze, F. 1969. Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal. Biochem. 27:502–522.PubMedGoogle Scholar
  32. 32.
    Kostyuk, V. A., and Potapovich, A. L. 1989. Superoxide-driven oxidation of quercetin and a simple sensitive assay for determination of superoxide dismutase. Biochem. Int. 19:1117–24.PubMedGoogle Scholar
  33. 33.
    Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T., and DeLong, M. R. 1982. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239.PubMedGoogle Scholar
  34. 34.
    Perrins, R., Briancon, S., Jeandel, C., Artur, Y., Minn, A., Penin, F., and Siest, G. 1990. Blood activity of Cu/Zn superoxide dismutase, glutathione peroxidase and catalase in Alzheimer's disease: a case-control study. Gerontology 36:306–313.PubMedGoogle Scholar
  35. 35.
    Zemlen, F. P., Thienhaus, O. J., and Bosman, H. B. 1989. Superoxide dismutase activity in Alzheimer's disease: possible mechanism for paired helical filament formation. Brain Res. 476:160–162.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Louisa Balazs
    • 1
  • Michael Leon
    • 1
  1. 1.Department of PathologyUniversity of Tennessee College of MedicineMemphis
  2. 2.Department of PsychobiologyUniversity of CaliforniaIrvine

Personalised recommendations