Advertisement

Neurochemical Research

, Volume 6, Issue 8, pp 821–833 | Cite as

Effect of cytidine diphosphate choline (CDP-choline) on ischemia-induced alterations of brain lipid in the gerbil

  • Gianfranco Trovarelli
  • Gianna Evelina De Medio
  • Robert V. Dorman
  • Gian Luigi Piccinin
  • Lloyd A. Horrocks
  • Giuseppe Porcellati
Original Articles

Abstract

Brain ischemia was produced in gerbils (Meriones unguiculatus) by the bilateral ligation of the carotid arteries. Definite changes in the energy status of brain demonstrated that carotid occlusion was effective. Five minutes before ligation, an intraventricular injection of either saline or cytidine diphosphate choline (CDP-choline, 0.6 μmol/brain, 3μl) was given to groups of animals. Control animals, with and without CDP-choline, together with the ischemic groups, were decapitated directly into liquid nitrogen; 10 min after arterial ligation. Brain free fatty acids, neutral lipids and phospholipids, which were labeled in vivo by the intraventricular injection of [1-14C] arachidonic acid (0.4–0.6 μCi, 6–9 nmol) 2 hr prior to ligation, were extracted, purified, and separated by thin-layer chromatographic procedures. The CDP-choline treatment noticeably corrected the increase of total and individual fatty acids due to ischemia and the increase of their radioactivity content. The changes in neutral lipids, particularly in the diacyl glycerol fraction, were also corrected by the injection of the nucleotide. CDP-choline partially reversed the decrease of brain phosphatidylcholine and of its labeling, which was due to ischemia. All the data indicate that the prior injection of CDP-choline stimulates the choline phosphotransferase reaction of brain towards synthesis of phosphatidylcholine and prevents the release of free fatty acids, particularly of arachidonic acid, associated with ischemia.

Keywords

Arachidonic Acid Neutral Lipid Ischemic Group Intraventricular Injection Meriones Unguiculatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bazàn, N. G. 1976. Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock. Pages 317–335,in Porcellati, G., Amaducci, L., andGalli, C. (eds.), Function and Metabolism of Phospholipids in the Central and Peripheral Nervous Systems, Vol. 72, Plenum Press, New York.Google Scholar
  2. 2.
    Cenedella, R. J., Galli, C., andPaoletti, R. 1975. Brain free fatty acid levels in rats sacrified by decapitation versus focused microwave irradiation. Lipids 10:290–293.PubMedGoogle Scholar
  3. 3.
    Marion, J., andWolfe, L. S. 1979. Origin of the arachidonic acid released post-mortem in rat forebrain. Biochim. Biophys. Acta 574:25–32.PubMedGoogle Scholar
  4. 4.
    Porcellati, G., De Medio, G. E., Fini, C., Floridi, A., Goracci, G., Horrocks, L. A., Lazarewicz, J. W., Palmerini, C. A., Strosznajder, J., andTrovarelli, G. 1978. Phospholipid and its metabolism in ischemia. Pages 285–302,in Neuhoff, V. (ed.), Proceedings of the European Society for Neurochemistry, Vol. 1, Verlag Chemie, Weinheim.Google Scholar
  5. 5.
    De Medio, G. E., Goracci, G., Horrocks, L. A., Lazarewicz, J. W., Mazzari, S., Porcellati, G., Strosznajder, J., andTrovarelli, G. 1980. The effect of transient ischemia on fatty acid and lipid metabolism in the gerbil brain. Ital. J. Biochem. 29:412–432.PubMedGoogle Scholar
  6. 6.
    Banschbach, M. W., andGeison, R. L. 1974. Post mortem increase in rat cerebral hemisphere diglyceride pool size. J. Neurochem. 23:875–877.PubMedGoogle Scholar
  7. 7.
    Aveldaño, M. I., andBazàn, N. G. 1975. Rapid production of diacylglycerols enriched in arachidonate and stearate during early brain ischemia. J. Neurochem. 25:919–920.PubMedGoogle Scholar
  8. 8.
    Cabot, M. C., andGatt, S. 1976. Hydrolysis of neutral glycerides by lipases of rat brain microsomes. Biochim. Biophys. Acta 431:105–115.PubMedGoogle Scholar
  9. 9.
    Keough, K. M. W., MacDonald, G., andThompson, W. 1972. A possible relation between phosphoinositides and the diglyceride pool in rat brain. Biochim. Biophys. Acta 270:337–343.PubMedGoogle Scholar
  10. 10.
    MacDonald, G., Baker, R. R., andThompson, W. 1975. Selective synthesis of molecular classes of phosphatidic acid, diacylglycerol and phosphatidylinositol in rat brain. J. Neurochem. 24:655–661.PubMedGoogle Scholar
  11. 11.
    Sun, G. Y. 1977. Metabolism of arachidonate and stearate injected simultaneously into the mouse brain. Lipids 12:661–665.PubMedGoogle Scholar
  12. 12.
    Roberti, R., Binaglia, L., andPorcellati, G. 1980. Synthesis of molecular species of glycerophospholipids from diglyceride-labeled brain microsomes. J. Lipid Res. 21:449–454.PubMedGoogle Scholar
  13. 13.
    Horrocks, L. A., Spanner, S., Mozzi, R., Fu, S. C., D'Amato, R. A., andKrakowka, S. 1978. Plasmalogenase is elevated in early demyelinating lesions. Pages 342–347,in Palo, J. (ed.), Myelination and Demyelination: Recent Chemical Advances, Plenum Press, New York.Google Scholar
  14. 14.
    Edgar, A. D., Freysz, L., Mandel, P., andHorrocks, L. A. 1980. Phospholipases in ischemic gerbil brain. Trans. Am. Soc. Neurochem. 11:100.Google Scholar
  15. 15.
    Goracci, G., Horrocks, L. A., andPorcellati, G. 1977. Reversibility of ethanolamine and choline phosphotranspherases (EC 2.7.8.1 and 2.7.8.2) in rat brain microsomes with labelled alkylacylglycerols. FEBS Lett. 80:41–44.PubMedGoogle Scholar
  16. 16.
    Goracci, G., Francescangeli, E., Horrocks, L. A., andPorcellati, G. 1981. The reverse reaction of choline phosphotranspherase in rat brain microsomes: A new pathway for degradation of phosphatidylcholine. Biochim. Biophys. Acta 664:373–379.PubMedGoogle Scholar
  17. 17.
    Siesjo, B. K. 1978. Brain Energy Metabolism, Chapter 15, John Wiley & Sons, New York.Google Scholar
  18. 18.
    Mazzari, S., andFinesso, M. 1978. Effect of ischemia on energy metabolism and catecholamine levels in the gerbil brain in vivo. Page 310,in Neuhoff, V. (ed.), Proceedings of the European Society for Neurochemistry, Vol. 1, Verlag Chemie, Weinheim.Google Scholar
  19. 19.
    Galli, C., Spagnuolo, C., Sautebin, L., andGalli, G. 1978. Arachidonic acid metabolism and cyclic nucleotides in the CNS during hypoxia. Pages 271–284,in Neuhoff, V. (ed.), Proceedings of the European Society for Neurochemistry, Vol. 1, Verlag Chemie, Weinheim.Google Scholar
  20. 20.
    Trovarelli, G., De Medio, G. E., Piccinin, G. L., andPorcellati, G. 1980. Metabolismo dell'acido arachidonico in cervelli ischemici di gerbil dopo iniezione di CDP-colina. Page 246,in 26th Congresso Nazionale Soc. It. Biochim., Bologna.Google Scholar
  21. 21.
    Horrocks, L. A., Dorman, R. V., Dabrowiecki, Z., Goracci, G., andPorcellati, G. 1980. CDP-choline and CDP-ethanolamine prevent the release of free fatty acids during brain ischemia. Golden Jubilee International Congress Progress in Lipid Research. Comm. No. 93, page 51.Google Scholar
  22. 22.
    Freeman, C. P., andWest, D. 1966. Complete separation of lipid classes on a single thinlayer plate. J. Lipid Res. 7:324–327.PubMedGoogle Scholar
  23. 23.
    Mangold, H. F. 1969. Aliphatic lipids. Pages 363–421,in Stahl, E. (ed.), Thin-Layer Chromatography, Springer Verlag, Berlin.Google Scholar
  24. 24.
    Yau, T. M., andSun, G. Y. 1974. The metabolism of [1-14C]arachidonic acid in the neutral glycerides and phosphoglycerides of mouse brain. J Neurochem. 23:99–104.PubMedGoogle Scholar
  25. 25.
    Michell, R. H., Allan, D., andFinean, J. B. 1976. Significance of minor glycerolipids in membrane structure and function. Pages 3–13,in Porcellati, G., Amaducci, L. andGalli, C. (eds.), Function and Metabolism of Phospholipids in the Central and Peripheral Nervous Systems, Vol. 72, Plenum Press, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • Gianfranco Trovarelli
    • 1
  • Gianna Evelina De Medio
    • 1
  • Robert V. Dorman
    • 2
  • Gian Luigi Piccinin
    • 3
  • Lloyd A. Horrocks
    • 2
  • Giuseppe Porcellati
    • 1
  1. 1.Istituto di Chimica BiologicaUniversità di PerugiaPerugiaItaly
  2. 2.Department of Physiological ChemistryThe Ohio State UniversityColumbus
  3. 3.Clinica NeurologicaUniversità di PerugiaPerugiaItaly

Personalised recommendations