Neurochemical Research

, Volume 5, Issue 7, pp 683–695 | Cite as

Changes in the content and acyl group composition of glycerophospholipids of brain endothelial cells of the developing rat

  • D. F. Matheson
  • R. Oei
  • Betty I. Roots
Original Articles


The glycerophospholipid (GPL) content and acyl group compositions of isolated brain endothelial fractions have been determined in the developing rat. During development there is a marked change in proportions of ethanolamine glycerophospholipids (EGP) to choline glycerophospholipids (CGP), the former rising while CGP falls with age. The acyl group compositions of plasmenylethanolamine (P-GPE) and 1,2-diacyl-sn-glycero-3-phosphocholine (D-GPC) alter significantly during development; both show a decline in saturated fatty acids (SFAs) and a rise in then-6/SFA ratio, in contrast to a constancy in composition of 1,2-diacyl-sn-glycero-3-phosphoethanolamine (D-GPE). The degree of change in the acyl group composition in a particular GPL fraction is related to the rate of its accumulation and to the proportional increase in concentration, fractions accumulating most rapidly or increasing markedly in concentration showing the greatest acyl group compositional change. The possible significance of the high proportion of SFAs in P-GPE and D-GPC fractions in the developing brain endothelial fraction is discussed in relation to the altering blood-brain barrier capacities observed with age.


Endothelial Cell Choline Saturated Fatty Acid Ethanolamine Marked Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peters, A. 1962. Plasma membrane contacts in the central nervous system. J. Anat. 96:237–248.PubMedGoogle Scholar
  2. 2.
    Wolff, J. 1963. Beitrage zur Ultrastruktur der Kapillaren in der normalen Grosshirnrinde. Z. Zellforsch. 60:409–431.PubMedGoogle Scholar
  3. 3.
    Reese, T. S., andKarnovsky, M. J. 1967. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 34:207–217.PubMedGoogle Scholar
  4. 4.
    Bodenheimer, T. S., andBrightman, M. W. 1968. A blood-brain barrier to peroxidase in capillaries surrounded by perivascular spaces. Am. J. Anat. 122:249–268.PubMedGoogle Scholar
  5. 5.
    Bar, Th., andWolff, J. R. 1972. The formation of capillary basement membranes during internal vascularization of the rat's cerebral cortex. Z. Zellforsch. 13:231–248.Google Scholar
  6. 6.
    Edstrom, R. 1964. Recent developments of the blood-brain barrier concept. Int. Rev. Neurobiol. 7:153–190.Google Scholar
  7. 7.
    Dobbing, J. 1968. The development of the blood-brain barrier. Prog. Brain Res. 29:417–425.PubMedGoogle Scholar
  8. 8.
    Woodbury, D. M. 1972. Maturation of the blood-brain and blood-CSF barriers. Adv. Biochem. Biol. 8:259–287.Google Scholar
  9. 9.
    Lajtha, A., andMela, P. 1961. The brain barrier system. I. The exchange of free amino acids between plasma and brain. J. Neurochem. 7:210–217.Google Scholar
  10. 10.
    Oldendorf, W. H. 1972. Blood brain barrier permeability to lactate. Eur. Neurol. 6:49–55.Google Scholar
  11. 11.
    Oldendorf, W. H. 1973. Carrier-mediated blood-brain barrier transport of short chain monocarboxylic organic acids. Am. J. Physiol. 224:1450–1453.PubMedGoogle Scholar
  12. 12.
    Cremer, J. E., Braum, L. D., andOldendorf, W. H. 1976. Changes during development in the transport processes of the blood-brain barrier. Biochim. Biophys. Acta 448:633–637.PubMedGoogle Scholar
  13. 13.
    Goldstein, G. W., Wolinsky, J. S., Csejtey, J., andDiamond, I. 1975. Isolation of metabolically active capillaries from rat brain. J. Neurochem. 25:715–717.PubMedGoogle Scholar
  14. 14.
    Selivonchick, D. P., andRoots, B. I. 1977. Lipid and fatty acyl composition of rat brain capillary endothelia isolated by a new technique. Lipids 12:165–169.PubMedGoogle Scholar
  15. 15.
    Matheson, D. F., Oei, R., andRoots, B. I. 1980. Influence of diet on the acyl composition of phospholipids in endothelial cells and mitochondria of rat brain. Neurochem. Res. 5:43–59.PubMedGoogle Scholar
  16. 16.
    Glowinski, J., andIversen, L. L. 1966. Regional studies of catecholamines in the rat brain—I. The deposition of [3H]norepinephrine, [3H]dopamine, and [3H]DOPA in various regions of the brain. J. Neurochem. 13:655–669.PubMedGoogle Scholar
  17. 17.
    Eng, L. F., andNoble, E. P. 1968. The maturation of rat brain myelin. Lipids 3:157–162.Google Scholar
  18. 18.
    Schmid, H. H. O., andTakahashi, T. 1970. Reduction and oxidative biosynthesis of plasmalogens in myelinating brain. J. Lipid Res. 11:412–419.PubMedGoogle Scholar
  19. 19.
    Johnston, P. V. 1971. Basic Lipid Methodology, University of Illinois, Urbana.Google Scholar
  20. 20.
    Wells, M. A., andDittmer, J. C. 1967. A comprehensive study of the postnatal change in the concentration of lipids of the developing rat brain. Biochemistry 6:3169–3175.PubMedGoogle Scholar
  21. 21.
    Fish, I., andWinick, M. 1969. Effect of malnutrition on region growth of the developing rat brain. Exp. Neurol. 25:534–540.PubMedGoogle Scholar
  22. 22.
    Norton, W. T., andPoduslo, S. E. 1973. Myelination in rat brain: changes in myelin composition during brain maturation. J. Neurochem. 21:759–773.PubMedGoogle Scholar
  23. 23.
    Selivonchick, D. P., andRoots, B. I. 1979. Isolated brain capillary endothelia: influence of various levels of essential fatty acids on the acyl group composition of glycerophospholipids. Lipids 14:66–69.PubMedGoogle Scholar
  24. 24.
    Crawford, C. G., andWells, M. A. 1979. Fatty acid and molecular species composition of rat brain phosphatidylcholine and ethanolamine from birth to weaning. Lipids 14:757–762.PubMedGoogle Scholar
  25. 25.
    Sun, G. Y., andYau, T. M. 1976. Changes in acyl group composition of diacyl-glycerophosphorylethanolamine, alkenylacyl-glycerophosphorylethanolamine and diacyl-glycerophosphorylcholine in myelin and microsomal fractions of mouse brain during development. J. Neurochem. 26:291–295.PubMedGoogle Scholar
  26. 26.
    Horrocks, L. A. 1972. Content, composition and metabolism of mammalian and avian lipids that contain ether groups. Pages 177–272,in Snyder, F. (ed.), Ether Lipids: Chemistry and Biology, Academic Press, New York.Google Scholar
  27. 27.
    Sun, G. Y., andHorrocks, L. A. 1971. The acyl and alk-1-enyl groups of the major phosphoglycerides from ox brain myelin and mouse brain microsomal, mitochondrial and myelin fractions. Lipids 5:1006–1012.Google Scholar
  28. 28.
    Sun, G. Y., andSun, A. Y. 1972. Phospholipids and acyl groups of synaptosomal and myelin membranes isolated from the cerebral cortex of squirrel monkey (Saimiri sciureus). Biochim. Biophys. Acta 280:306–315.PubMedGoogle Scholar
  29. 29.
    Matheson, D. F., Oei, R., andRoots, B. I. 1980. Changes in the fatty acyl composition of phospholipids in the optic tectum and optic nerve of temperature acclimated goldfish. Physiol. Zool. 53:57–69.Google Scholar
  30. 30.
    Joffe, S. 1969. Interrelationships among the ethanolamine phosphatides in myelinating brain. J. Neurochem. 16:715–723.PubMedGoogle Scholar
  31. 31.
    Etzrodt, A., andDebuch, H. 1970. Uber den Einbau von [1-14C] Acetat in die Fettsauren und Aldehyde der äthanolaminhaltigen Phospholipoide des Gehirus junger Ratten. Hoppe-Seyler's Z. Physiol. Chem. 351:603–612.PubMedGoogle Scholar
  32. 32.
    Mohrhauer, H. Christiansen, K., Gau, M. V., Deubig, M., andHolman, R. T. 1967. Chain Elongation of linoleic acid and its inhibition by other fatty acids in vitro. J. Biol. Chem. 242:4507–4514.PubMedGoogle Scholar
  33. 33.
    Ullman, D., andSprecher, H. 1971. An in vitro and in vivo study of the conversion of eicosa-11,14-dienoic acid to eicosa-5,11,14-trienoic acid and of the conversion of eicosa-11-enoic acid to eicosa-5,11-dienoic acid in the rat. Biochim. Biophys. Acta 248:186–197.PubMedGoogle Scholar
  34. 34.
    Sprecher, H. 1976. Interconversions of polyunsaturated fatty acids. Pages 29–42,in Hawkins, W. W. (ed.), The Essential Fatty Acids, Miles Laboratory Ltd. Rexdale, Ontario, Canada.Google Scholar
  35. 35.
    Caley, D. W., andMaxwell, D. S. 1970. Development of the blood vessels and extracellular spaces during postnatal maturation of the rat cerebral cortex. J. Comp. Neurol. 138:31–48.PubMedGoogle Scholar
  36. 36.
    Hauw, J. J., Berger, B., andEscourolle, R. 1975. Electron microscopic study of the developing capillaries of human brain. Acta Neuropathol. 31:229–242.PubMedGoogle Scholar
  37. 37.
    Cook, H. W., andSpence, M. W. 1974. Biosynthesis of fatty acidsin vitro by homogenate developing rat brain: Desaturation and chain elongation. Biochim. Biophys. Acta 369:129–141.PubMedGoogle Scholar
  38. 38.
    Cook, H. W. 1979. Differential alteration of δ9 and δ6 desaturation of fatty acids in rat brain preparations in vitro. Lipids 14:763–767.PubMedGoogle Scholar
  39. 39.
    Brendal, K., Meczan, E., andCarlson, E. C. 1974. Isolated brain microvessels: purified metabolically active preparation from bovine cerebral cortex. Science 185:953–955.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • D. F. Matheson
    • 1
  • R. Oei
    • 1
  • Betty I. Roots
    • 1
  1. 1.Department of Zoology Erindale CollegeUniversity of TorontoMississaugaCanada

Personalised recommendations