Probability Theory and Related Fields

, Volume 83, Issue 3, pp 405–434 | Cite as

Classical dirichlet forms on topological vector spaces-the construction of the associated diffusion process

  • Sergio Albeverio
  • Michael Röckner


Given a (minimal) classical Dirichlet form onL2 (E;μ) we construct the associated diffusion process. HereE is a locally convex topological vector space and μ is a (not necessarily quasi-invariant) probability measure onE. The construction is carried out under certain assumptions onE and μ which can be easily verified in many examples. In particular, we explicitly apply our results to (time-zero and space-time) quantum fields (with or with-out cut-off).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A1]
    S.Albeverio: Some points of interaction between stochastic analysis and quantum theory. In: Christopeit, N., Helmes, K., Kohlman, M. (eds.) Stochastic differential systems. Proceedings, Bad Honnef 1985. (Lect. Notes Contr. Inf. Sci., vol. 18, pp. 1–26) Berlin Heidelberg New York: Springer 1986Google Scholar
  2. [A/F/H-K/L]
    Albeverio, S., Fenstad, J.E., Høegh-Krohn, R., Lindstrøm, T.: Nonstandard methods in stochastic analysis and mathematical physics. New York London: Academic Press 1986Google Scholar
  3. [A/Hi/P/Rö/St]
    Albeverio, S., Hida, T., Potthoff, J., Röckner, M., Streit, L.: Dirichlet forms in terms of white noise analysis I+II. BiBoS-preprints (1989)Google Scholar
  4. [A/H-K1]
    Albeverio, S., Høegh-Krohn, R.: The Wightman axioms and the mass gap for strong interactions of exponential type in two dimensional space-time. J. Funct. Anal.16, 39–82 (1974)Google Scholar
  5. [A/H-K2]
    Albeverio, S., Høegh-Krohn R.: Quasi-invariant measures, symmetric diffusion processes and quantum fields. In. Les méthodes mathématiques de la théorie quantique des champs, Colloques Internationaux du C.N.R.S., no. 248, Marseille, 23–27 juin 1975, C.N.R.S., 1976Google Scholar
  6. [A/H-K3]
    Albeverio, S., Høegh-Krohn, R.: Dirichlet forms and diffusion processes on rigged Hilbert spaces. Z. Wahrscheinlichkeitstheor. Verw. Geb.40, 1–57 (1977)Google Scholar
  7. [A/H-K4]
    Albeverio, S., Høegh-Krohn, R.: Hunt processes and analytic potential theory on rigged Hilbert spaces. Ann. Inst. Henri Poincaré8, 269–291 (1977)Google Scholar
  8. [A/H-K5]
    Albeverio, S., Høegh-Krohn, R.: Uniqueness and the global Markov property for Euclidean fields. The case of trigonometric interactions. Commun. Math. Phys.68, 95–128 (1979)Google Scholar
  9. [A/H-K6]
    Albeverio, S., Høegh-Krohn, R.: Diffusion fields, quantum fields, and fields with values in Lie groups. In: Pinsky, M.A. (ed.) Stochastic analysis and applications. New York: Marcel Dekker 1984Google Scholar
  10. [A/K]
    Albeverio, S., Kusuoka, S.: Maximality of infinite dimensional Dirichlet forms and Høegh-Krohn's model of quantum fields. Kyoto-Bochum Preprint (1988), to appear in Mem. Volume for R. Høegh-KrohnGoogle Scholar
  11. [A/Rö1]
    Albeverio, S., Röckner, M.: Classical Dirichlet forms on topological vector spaces — closability and a Cameron-Martin formula. J. Funct. Anal. (1989)Google Scholar
  12. [A/Rö2]
    Albeverio, S., Röckner, M.: Dirichlet forms, quantum fields and stochastic quantization. In: Elworthy, R.D., Zambrini, J.C. (eds.) Stochastic analysis, path integration and dynamics. (Pitman Res. Notes, vol. 200, pp. 1–21) Harlow Longman 1989Google Scholar
  13. [Bad]
    Badrikian, A.: Séminaire sur les fonctions aléatoires linéaires et les mesures cylindriques. (Lect. Notes Math., vol. 139) Berlin Heidelberg New York: Springer 1970Google Scholar
  14. [Ba]
    Bauer, H.: Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie. Berlin New York: de Gruyter 1978Google Scholar
  15. [Bo/Ch/Mi]
    Borkar, V.S., Chari, R.T., Mitter, S.K.: Stochastic quantization of field theory in finite and infinite volume. J. Funct. Anal.81, 184–206 (1988)Google Scholar
  16. [Bou/Hi]
    Bouleau, N., Hirsch, F.: Formes de Dirichlet générales et densité des variables aléatoires réelles sur l'espace de Wiener. J. Funct. Anal.69, 229–259 (1986)Google Scholar
  17. [B]
    Bourbaki, N.: Topologie générale, Chapitres 5 à 10. Paris: Hermann 1974Google Scholar
  18. [D/M]
    Dellacherie, C., Meyer, P.A.: Probabilities and potential. Amsterdam New York Oxford: North-Holland 1978Google Scholar
  19. [Di]
    Dixmier, J.: Les algèbres d'opérateurs dans l'espace hilbertien. Paris: Gauthier-Villars 1969Google Scholar
  20. [Do/Min]
    Dobrushin, R.I., Minlos, R.A.: The moments and polynomials of a generalized random field. Theor. Probab. Appl.23, 686–699 (1978)Google Scholar
  21. [Dö]
    Döring, C.R.: Nonlinear parabolic stochastic differential equations with additive coloured noise on 432-1: a regulated stochastic quantization. Commun. Math. Phys.109, 537–561 (1987)Google Scholar
  22. [Dy1]
    Dynkin, E.B.: Markov processes vols. I and II. Berlin Heidelberg New York: Springer 1965Google Scholar
  23. [Dy2]
    Dynkin, E.B.: Green's and Dirichlet spaces associated with fine Markov processes. J. Funct. Anal.47, 381–418 (1982)Google Scholar
  24. [Dy3]
    Dynkin, E.B.: Green's and Dirichlet spaces for a symmetric Markov transition function. (Preprint 1982)Google Scholar
  25. [Fö]
    Föllmer, H.: Phase transition and Martin boundary. Séminaire de probabilités IX, Strasbourg. (Lect. Notes Math., vol. 465) Berlin Heidelberg New York: Springer 1975Google Scholar
  26. [Fr1]
    Fröhlich, J.: Schwinger functions and their generating functionals, I. Helv. Phys. Acta47, 265–306 (1974)Google Scholar
  27. [Fr2]
    Fröhlich, J.: Schwinger functions and their generating functionals, II. Markovian and generalized path space measures onL. Adv. Math.23, 119–180 (1977)Google Scholar
  28. [Fr/I/L/Si]
    Fröhlich, J., Israel, R., Lieb, E., Simon, B.: Phase transitions and reflection positivity. I. General theory and long-range lattice models. Commun. Math. Phys.62, 1–34 (1978)Google Scholar
  29. [Fr/Si]
    Fröhlich, J., Simon, B.: Pure states for general 432-3: construction, regularity and variational equality. Ann. Math.105, 493–526 (1977)Google Scholar
  30. [F0]
    Fukushima, M.: Regular representations of Dirichlet forms. Trans. Amer. Math. Soc.155, 455–473 (1971)Google Scholar
  31. [F1]
    Fukushima, M.: Dirichlet spaces and strong Markov processes. Trans. Amer. Math. Soc.162, 185–224 (1971)Google Scholar
  32. [F]
    Fukushima, M.: Dirichlet forms and Markov processes. Amsterdam Oxford New York. North-Holland 1980Google Scholar
  33. [F2]
    Fukushima, M.: Basic properties of Brownian motion and a capacity on the Wiener space. J. Math. Soc. Japan36, 161–175 (1984)Google Scholar
  34. [Ga]
    Gamelin, T.W.: Uniform algebras, Englewood Cliffs: Prentice Hall 1969Google Scholar
  35. [Ge/V]
    Gelfand, I.M., Vilenkin, N.J.: Generalized functions, vol. 4. Some applications of harmonic analysis. New York: Academic Press 1964Google Scholar
  36. [Get]
    Getoor, R.K.: Markov processes: Ray processes and right processes. (Lect. Notes Math., vol. 440) Berlin Heidelberg New York: Springer 1975Google Scholar
  37. [G1/J1]
    Glimm, J., Jaffe, A.: Entropy principle for vertex functions in quantum field models. Ann. Inst. Henri Poincaré21, 1–26 (1974)Google Scholar
  38. [G1/J]
    Glimm, J., Jaffe, A.: Quantum physics: A functional integral point of view. New York Heidelberg Berlin: Springer 1981Google Scholar
  39. [G1/J/S1]
    Glimm, J., Jaffe, A., Spencer, T.: The particle structure of the weakly coupled 433-1 model and other applications of high temperature expansions. In: Velo, G., Wightman, A. (eds.) Constructive quantum field theory. Berlin Heidelberg New York; Springer 1973Google Scholar
  40. [G1/J/S2]
    Glimm, J., Jaffe, A., Spencer, T.: The Wightman axioms and particle structure in the 433-2 quantum field model. Ann. Math.100, 585–632 (1974)Google Scholar
  41. [G]
    Gross, L.: Abstract Wiener spaces. Proc. 5th Berkeley Symp. Math. Stat. Prob.2, 31–42 (1965)Google Scholar
  42. [Gu/Ro/Si1]
    Guerra, F., Rosen, J., Simon, B.: The 433-3 Euclidean quantum field theory as classical statistical mechanics. Ann. Math.101, 111–259 (1975)Google Scholar
  43. [Gu/Ro/Si2]
    Guerra, F., Rosen, J., Simon, B.: Boundary conditions in the 433-4 Euclidean field theory. Ann. Inst. Henri Poincaré15, 231–334 (1976)Google Scholar
  44. [H]
    Haba, Z.: Some non-Markovian Osterwalder-Schrader fields, Ann. Inst. Henri Poincaré, Sect. A (N.S.)32, 185–201 (1980)Google Scholar
  45. [Ha]
    Hamza, M.M.: Détermination des formes de Dirichlet sur ℝn. Thèse 3eme cycle, Orsay (1975)Google Scholar
  46. [Hi]
    Hida, T.: Brownian motion. Berlin Heidelberg New York: Springer 1980Google Scholar
  47. [J-L/Mi]
    Jona-Lasinio, P., Mitter, P.K.: On the stochastic quantization of field theory. Commun. Math. Phys.101, 409–436 (1985)Google Scholar
  48. [Ku]
    Kuo, H.: Gaussian measures in Banach spaces. (Lect. Notes Math., vol. 463, pp. 1–224) Berlin Heidelberg New York; Springer 1975Google Scholar
  49. [K]
    Kusuoka, S.: Dirichlet forms and diffusion processes on Banach space. J. Fac. Science Univ. Tokyo, Sec. 1 A29, 79–95 (1982)Google Scholar
  50. [Ma]
    Malliavin, P.: Stochastic calculus of variation and hypoelliptic operators. Proc. of the International Symposium on Stochastic Differential Equations, Kyoto 1976, Tokyo 1978Google Scholar
  51. [Mi]
    Mitter, P.K.: Stochastic approach to Euclidean field theory (Stochastic Quantization). In: Abad, J., Asorey, M., Cruz, A. (eds.) New perspectives in quantum field theories. Singapore: World Scientific 1986Google Scholar
  52. [N]
    Nelson, E.: The free Markov field. J. Funct. Anal.12, 221–227 (1973)Google Scholar
  53. [Pa/Wu]
    [Pa/Wu]Parisi, G., Wu, Y.S.: Perturbation theory without gauge fixing. Sci. Sin.24,483–496 (1981)Google Scholar
  54. [P]
    Parthasathy, K.R.: Probability measures on metric spaces. New York London: Academic Press 1967Google Scholar
  55. [Po/Rö]
    Potthoff, J., Röckner, M.: On the contraction property of Dirichlet forms on infinite dimensional space. Preprint, Edinburgh, 1989, to appear in J. Funct. Anal.Google Scholar
  56. [Pr]
    Preston, C.: Random fields. (Lect. Notes Math., vol. 534) Berlin Heidelberg New York: Springer 1976Google Scholar
  57. [Re/Si]
    Reed, M., Simon, B.: Methods of modern mathematical physics. I. Functional analysis. New York London: Academic Press 1972Google Scholar
  58. [R]
    Ripley, B.D.: The disintegration of invariant measures. Math. Proc. Camb. Phil. Soc.79, 337–341 (1976)Google Scholar
  59. [Rö0]
    Röckner, M.: Generalized Markov fields and Dirichlet forms. Acta Appl. Math.3, 285–311 (1985)Google Scholar
  60. [Rö1]
    Röckner, M.: Specifications and Martin boundaries for 433-6 fields. Commun. Math. Phys.106,105–135 (1986)Google Scholar
  61. [Rö2]
    Röckner, M.: Traces of harmonic functions and a new path space for the free quantum field. J. Funct. Anal.79, 211–249 (1988)Google Scholar
  62. [Rö3]
    Röckner, M.: On the transition function of the infinite dimensional Ornstein-Uhlenbeck process given by the free quantum field. In: Král, J., Lukeš, J., Netoka, I., Veselý, J. (eds.) Potential theory. New York London: Plenum Press 1988Google Scholar
  63. [Rö/W]
    Röckner, M., Wielens, N.: Dirichlet forms — closability and change of speed measure. In: Albeverio, S. (ed.) Infinite dimensional analysis and stochastic processes. Boston London Melbourne: Pitman 1985Google Scholar
  64. [Ru/Sp]
    Rullkötter, K., Spönemann, U: Dirichletformen und Diffusionsprozesse. Diplomarbeit, Bielefeld (1983)Google Scholar
  65. [Sch]
    Schwartz, L.: Radon measures on arbitrary topological spacas and cylindrical measures. London: Oxford University Press 1973Google Scholar
  66. [S]
    Silverstein, M.L.: Symmetric Markov processes. (Lect. Notes Math., vol. 426) Berlin Heidelberg New York: Springer 1974Google Scholar
  67. [Si]
    Simon, B.: The 434-1 Euclidean (quantum) field theory. Princeton: Princeton University Press 1974Google Scholar
  68. [Sp]
    Spönemann, U.: PhD thesis, Bielefeld 1989.Google Scholar
  69. [St]
    Steffens, J.: Excessive measures and the existence of right semigroups and processes. PreprintGoogle Scholar
  70. [T]
    Takesaki, M.: Theory of operator algebras I. New York Heidelberg Berlin: Springer 1979Google Scholar
  71. [Wa]
    Watanabe, S.: Lectures on stochastic differential equations and Malliavin calculus. Berlin Heidelberg New York Tokyo: Springer 1984Google Scholar
  72. [Z]
    Zegarlinski, B.: Uniqueness and the global Markov property for Euclidean fields: The case of general exponential interaction. Commun. Math. Phys.96,195–221 (1984)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Sergio Albeverio
    • 1
    • 2
  • Michael Röckner
    • 1
  1. 1.Institut für MathematikRuhr-Universität BochumBochum 1Federal Republic of Germany
  2. 2.Department of MathematicsUniversity of EdinburghEdinburghScotland

Personalised recommendations