, Volume 178, Issue 4, pp 443–449 | Cite as

Measurement of internal pH in the coccolithophoreEmiliania huxleyi using 2′,7′-bis-(2-carboxyethyl)-5(and-6)carboxyfluorescein acetoxymethylester and digital imaging microscopy

  • G. K. Dixon
  • C. Brownlee
  • M. J. Merrett


Internal pH (pHi) was determined inEmiliania huxleyi (Lohmann) using the probe 2′,7′-bis-(2-carboxyethyl)-5(and-6)carboxyfluoresceinacetoxymethylester (BCEF-AM) and digital imaging microscopy. The probe BCECF-AM was taken up and hydrolysed to the free acid by the cells. A linear relationship was established between pHi and the 490/450 fluorescence ratio of BCECF-AM over the pH range 6.0 to 8.0 using the ionophore nigericin. Two distinct pH domains were identified within the cell, the cytoplasmic domain (approx. pH 7.0) and the chloroplast domain (approx. pH 8.0). The average pHi was 7.29 (±0.11) for cells in the presence of 2 mM HCO 3 . In the absence of HCO 3 the pHi was decreased by 0.8 pH unit. The importance of these changes in pHi is considered in relation to inorganic-carbon uptake.

Key words

2′,7′-bis-(2-carboxyethyl)-5(and-6)carboxyfluorescein Digital imaging microscopy Emiliania (coccolithophorid) Intracellular pH 







4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid


intracellular pH


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beardall, J. (1981) CO2 accumulation byChlorella saccharophila (Chlorophyceae) at low external pH: evidence for active transport of inorganic carbon at the chloroplast envelope. J. Phycol.17, 371–373Google Scholar
  2. Beardall, J., Raven, J.A. (1981) Transport of inorganic carbon and the “CO2 concentrating mechanism” inChlorella emersonii (Chlorophyceae). J. Phycol.17, 134–141Google Scholar
  3. Bright, G.R., Fisher, G.W., Rogowska, J., Lansing-Taylor, D. (1987) Fluorescence ratio imaging microscopy: Temporal and spatial measurements of cytoplasmic pH. J. Cell Biol.104, 1019–1033Google Scholar
  4. Brownlee, C., Pulsford, A. (1989) Visualization of the cytoplasmic Ca2+ gradient inFucus serratus rhizoids: Correlation with cell ultrastructure and polarity. J. Cell. Sci. (in press)Google Scholar
  5. Brownlee, C., Wood, J.W., Briton, D. (1987) Cytoplasmic free calcium in single cells of centric diatoms. The use of Fura-2. Protoplasma.140, 118–122Google Scholar
  6. Burns, B. D., Beardall, J. (1987) Utilization of inorganic carbon by marine microalgae. J. Exp. Mar. Biol. Ecol.107, 75–86Google Scholar
  7. Bush, D.S., Jones, R.L. (1987) Measurement of cytoplasmic calcium in aleurone protoplasts using indo-1 and fura-2. Cell Calcium8, 455–472Google Scholar
  8. Clarkson, D.T., Brownlee, C., Ayling, S.M. (1988) Cytoplasmic calcium measurements in intact higher plant cells: results from fluorescence ratio imaging of fura-2. J. Cell Sci.91, 71–80Google Scholar
  9. Colman, B., Gehl, K.A. (1983) Physiological characteristics of photosynthesis inPorphyridium cruentum: evidence for bicarbonate transport in a unicellular red alga. J. Phycol.19, 216–219Google Scholar
  10. Dixon, G.K., Patel, B.N., Merrett, M.J. (1987) Role of intracellular carbonic anhydrase in inorganic-carbon assimilation byPorphyridium purpureum. Planta172, 508–513Google Scholar
  11. Grynkiewicz, G., Poenie, M., Tsien, R.Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem.260, 3440–3450Google Scholar
  12. Heber, U., Heldt, H.W. (1981) The chloroplast envelope: structure, function and role in leaf metabolism. Annu. Rev. Plant Physiol.32, 139–168Google Scholar
  13. Holligan, P.M., Viollier, M., Harbour, D.S., Camus, P., Champagne-Philippe, M. (1983) Satelite and ship studies of coccolithophore production along a continental shelf edge. Nature304, 339–342Google Scholar
  14. L'Allemain, G., Paris, S., Pouyssegur, J. (1985) Role of a Na+ dependent Cl/HCO3 exchange in regulation of intracellular pH in fibroblasts. J. Biol. Chem.260, 4877–4883Google Scholar
  15. McIntyre, A., Bé, A.W.H. (1967) Modern coccolithophorides of the Atlantic Ocean I. Placoliths and cystoliths. Deep-Sea Res.14, 561–597Google Scholar
  16. Olsnes, S., Tonnessen, T.I., Sandvig, K. (1986) pH-regulated anion antiport in nucleated mammalian cells. J. Cell Biol.102, 967–971Google Scholar
  17. Paradiso, A.M., Tsien, R.Y., Machen, T.E. (1987) Digital image processing of intracellular pH in gastric oxyntic and chief cells. Nature325, 447–450Google Scholar
  18. Paasche, E. (1968) Biology and physiology of Coccolithophorids. Annu Rev. Microbiol.22, 71–86Google Scholar
  19. Patel, B.N., Merrett, M.J. (1986) Inorganic-carbon uptake by the marine diatomPhaeodactylum tricornutum. Planta169, 222–227Google Scholar
  20. Pentecost, A. (1985) Calcification and DIC metabolism. In: Inorganic carbon uptake by aquatic photosynthetic organisms, pp. 459–480, Lucas, W.J., Berry, J.A., eds. American Society of Plant PhysiologistsGoogle Scholar
  21. Provasoli, L., McLaughlin, J.J.A., Droop, M.R. (1957) The development of artificial media for marine algae. Arch. Mikrobiol.25, 392–428Google Scholar
  22. Raven, J.A. (1980) Nutrient transport in microalgae. Adv. Microb. Physiol.21, 47–226Google Scholar
  23. Raven, J.A., Smith, F.A. (1980) Intracellular pH regulation in the giant-celled marine algaChaetomorpha darwinii. J. Exp. Bot.31, 1357–1369Google Scholar
  24. Rees, T.A.V. (1984) Sodium dependent photosynthetic oxygen evolution in a marine diatom. J. Exp. Bot.35, 332–337Google Scholar
  25. Rink, T.J., Tsien, R.Y., Pozzan, T. (1982) Cytoplasmic pH and free Mg2+ in lymphocytes. J. Cell Biol.95, 189–196Google Scholar
  26. Roos, A., Boron, W.F. (1981) Intracellular pH. Physiol. Rev.61, 296–434Google Scholar
  27. Sikes, C.S., Wilbur, K.M. (1982) Functions of coccolith formation. Limnol. Oceanogr27, 18–26Google Scholar
  28. Sikes, C.S., Roer, R.D., Wilbur, K.M. (1980) Photosynthesis and coccolith formation: Inorganic carbon sources and net inorganic reaction of deposition. Limnol. Oceanogr.25, 248–261Google Scholar
  29. Smith, F.A. (1979) Comparison of the effects of ammonia and methylamine on chloride transport and intracellular pH inChara corallina. J. Exp. Bot.31, 597–606Google Scholar
  30. Thomas, R.C. (1982) Snail neuron intracellular pH regulation. In: Intracellular pH: Its measurement, regulation and utilisation in cellular functions, pp. 189–204, Nuctelli, R., Deamer, D.W., eds. A.R. Liss. Inc., New YorkGoogle Scholar
  31. Tromballa, H.W. (1983) The effect of CO2 on potassium transport byChlorella fusca. Plant Cell Environ.6, 537–543Google Scholar
  32. Werdan, K., Heldt, H.W., Mlovanceu, M. (1975) The role of pH in the regulation of carbon fixation in the chloroplast stroma. Studies on CO2 fixation in the light and dark. Biochim. Biophys. Acta.396, 276–292Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • G. K. Dixon
    • 1
  • C. Brownlee
    • 2
  • M. J. Merrett
    • 1
  1. 1.School of Biological SciencesUniversity College of SwanseaSwansea
  2. 2.The LaboratoryMarine Biological Association of the UKPlymouthUK

Personalised recommendations