Synchronous oscillations in neuronal systems: Mechanisms and functions

  • Charles M. Gray


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adey, W.R., Dunlop, C.W. and Hendrix, C.E. (1960) Hippocampal Slow Waves: Distribution and Phase Relations in the Course of Approach Learning. Arch. Neurol., 3:74–90.Google Scholar
  2. Adrian, E.D. (1942) Olfactory Reactions in the Brain of the Hedgehog. J. Physiol, 100:459–473.Google Scholar
  3. Adrian, E.D. (1950a) The Electrical Activity of the Mammalian Olfactory Bulb. Electroeceph. Clin. Neurophysiol., 2:377–388.Google Scholar
  4. Adrian, E.D. (1950b) Sensory Discrimination: With Some Recent Evidence From the Olfactory Organ. Brit. Med. Bull., 6(4):330–333.Google Scholar
  5. Adrian, E.D. (1954) The Basis of Sensation: Some Recent Studies of Olfaction. Brit. Med. J., Feb. 6th, 1954.Google Scholar
  6. Alonso, A. and Garcia-Austt, E. (1987a) Neuronal Sources of Theta Rhythm in the Entorhinal Cortex of the Rat I. Laminar Distribution of Theta Field Potentials. Exp. Brain Res., 67:493–501.Google Scholar
  7. Alonso, A. and Garcia-Austt, E. (1987b) Neuronal Sources of Theta Rhythm in the Entorhinal Cortex of the Rat II. Phase Relations Between Unit Discharges and Theta Field Potentials. Exp. Brain Res., 67:502–509.Google Scholar
  8. Alonso, A. and Llinas, R.R. (1989) Subthreshold Na+Dependent Theta-Like Rhythmicity in Stellate Cells of Entorhinal Cortex Layer II. Nature, 342:175–177.Google Scholar
  9. Ariel, M., Daw, N.W. and Rade, R.K. (1983) Rhythmicity in rabbit retinal ganglion cell responses. Vision Res., 23(12):1485–1493.Google Scholar
  10. Arnett, D.W. (1975) Correlation Analysis of Units Recorded in the Cat Dorsal Lateral Geniculate Nucleus. Exp. Brain Res., 24:111–130.Google Scholar
  11. Bal, T. and McCormick, D. (1993) Mechanisms of Oscillatory Activity in Guinea-Pig Nucleus Reticularis Tbalami in vitro: A Mammalian Pacemaker. J. Physiol., 468:669–691.Google Scholar
  12. Becker, C.J. and Freeman, W.J. (1968) Prepyriform Electric Activity After Loss of Peripheral or Central Input, or Both. Physiol. and Behav., 3:597–599.Google Scholar
  13. Bishop, P.O., Levick, W.R. and Williams, W.O. (1964) Statistical Analyses of the Dark Discharge of Lateral Geniculate Neurons. J. Physiol., 170:598–612.Google Scholar
  14. Bland, B.H., Andersen, P. and Ganes, T. (1975) Two Generators of Hippocampal Theta Activity in Rabbits. Brain Res., 94:199–218.Google Scholar
  15. Bland, B.H. and Wishaw, I.Q. (1976) Generators and Topography of Hippocampal Theta (RSA) in the Anesthetized and Freely Moving Rat. Brain Res., 118:259–280.Google Scholar
  16. Bland, B.H., Andersen, P., Ganes, T. and Sveen, O. (1980) Automated Analysis of Rhythmicity of Physiologically Identified Hippocampal Formation Neurons. Exp. Brain Res., 38:205–219.Google Scholar
  17. Bland, B.H. (1986) The Physiology and Pharmacology of Hippocampal Formation Theta Rhythms. Prog. in Neurobiol., 26:1–54.Google Scholar
  18. Blasdel, G.G. and Salama, G. (1986) Voltage-Senstive Dyes Reveal a Modular Organization in Monkey Striate Cortex. Nature, 321:579–585.Google Scholar
  19. Bliss, T.V.P. and Lomo, T. (1973) Long-lasting Potentiation of Synaptic Transmission in the Dentate Area of the Anesthetized Rabbit Following Stimulation of the Perforant Path. J. Physiol (Lond.), 232:331–356.Google Scholar
  20. Boeijinga, P.H. and Lopes da Silva, F.H. (1989) Modulations of EEG Activity in the Entorhinal Cortex and Forebrain Olfactory Areas During Odour Sampling. Brain Res., 478:257–268.Google Scholar
  21. Bouyer, J.J., Montaron, M.F. and Rougeul, A. (1981) Fast fronto-parietal rhythms during combined focused attentive behavior and immobility in cat: Cortical and thalamic localizations. Electroenceph. and Clin. Neurophysiol., 51:244–252.Google Scholar
  22. Bouyer, J.J., Montaron, M.F., Vahnee, J.M., Albert, M.P. Rougeul, A. (1987) Antamical Localization of Cortical Beta Rhythms in Cat. Neuroscience 22(3):863–869.Google Scholar
  23. Bragin, A., Jando, G., Nadasdy, Z., Hetke, J., Wise, K. and Buzsaki, G. (1993) Beta Frequency (40-100 Hz) Patterns in the Hippocampus: Modulation by Theta Activity. Soc. Neurosci. Abs., 19:148.3.Google Scholar
  24. Bressler, S.L. and Freeman, W.J. (1980) Frequency Analysis of Olfactory System EEG in Cat, Rabbit and Rat. Electroenceph. and Clinical Neurophysiol., 50:19–24.Google Scholar
  25. Bressler, S.L. (1984) Spatial Organization of EEGs From Olfactory Bulb and Cortex. Electro. Clin. Neurophys. 57:270–276.Google Scholar
  26. Bressler S.L. (1987a) Relation of Olfactory Bulb and Cortex: I. Spatial Variation of Bulbocortical Interdependence. Brain Res., 409:285–293.Google Scholar
  27. Bressler, S.L. (1987b) Relation of Olfactory Bulb and Cortex: II. Model for Driving of Cortex by Bulb. Brain Res., 409:294–301.Google Scholar
  28. Bressler, S.L., Coppola, R. and Nakamura, R. (1993) Episodic Multiregional Cortical Coherence at Multiple Frequencies During Visual Task Performance. Nature, 366:153–156.Google Scholar
  29. Bringuier, V., Fregnac, Y., Debanne, D., Shulz, D. and Baranyi, A. (1992) Synaptic Oigin of Rhythmic Visually Evoked Activity in Kitten Area 17 Neurones. Neuroreport, 3:1065–1068.Google Scholar
  30. Bullier, J., Munk, M.H.J. and Nowak, L.G. (1992) Synchronization of Neuronal Firing in Area V1 and V2 of the Monkey. Soc., Neurosci. Abs., 18:11.7.Google Scholar
  31. Bush, P.C. and Douglas, R.J. (1991) Synchronization of Bursting Action Potential Discharge in a Model Network of Neocortical Neurons. Neural Comp., 3:19–30.Google Scholar
  32. Buzsaki, G., Leung, L.S. and Vanderwolf, C.H. (1983) Cellular Bases of Hippocampal EEG in the Behaving Rat. Brain Res. Rev., 6:139–171.Google Scholar
  33. Buzsaki, G. (1986) Hippocampal Sharp Waves: Their Origin and Significance. Brain Res., 398:242–252.Google Scholar
  34. Buzsaki, G. (1989) Two-Stage Model of Memory Trace Formation: A Role of “Noisy” Brain States. Neuroscience, 31(3):551–570.Google Scholar
  35. Buzsaki, G., Horvath, Z., Urioste, R., Hetke, J. and Wise, K. (1992) High-Frequency Network Oscillation in the Hippocampus. Science, 256:1025–1027.Google Scholar
  36. Cajal, S.R. (1955) Studied on the Cerebral Cortex (limbic structures). Translated by L.M. Kraft, Lloyd-Luke, Ltd., London.Google Scholar
  37. Chatrian, G.E., Bickford, R.G. and Uilein, A. (1960) Depth Electrographic Study of a Fast Rhythm Evoked From the Human Calcarine Region by Steady Illumination. Electro. Clin. Neurophysiol., 12:167–176.Google Scholar
  38. Chen, D.F. and Fetz, E.E. (1993) Effect of Synchronous Neural Activity on Synaptic Transmission in Primate Cortex. Soc. Neurosci. Abs., 19:319.7.Google Scholar
  39. Desimone, R. and Ungerleider, L.G. (1989) Neural Mechanisms of Visual Processing in Monkeys. In: Handbook of Neuropsychology, Vol. 2, Chapter 14, F. Boller and J. Grafman (Eds.), Elsevier Science Publishers.Google Scholar
  40. Donoghue, J.P. and Sanes, J.N. (1991) Dynamic Modulation of Primate Motor Cortex Output During Movement. Neurosci. Soc. Abs., 17:407.5.Google Scholar
  41. Donoghue, J.P., Gaal, G., Niethamer, M. and Sanes, J.N. (1993) Oscillations in Local Field Potentials and Neural Discharge in Monkey Motor Cortex. Soc. Neurosci. Abs., 19:319.5.Google Scholar
  42. Doty, R.W. and Kimura, D.S. (1963) Oscillatory Potentials in the Visual System of Cats and Monkey. J. Physol., 168:205–218.Google Scholar
  43. Dreher, B. (1986) Thalamocortical and Corticocortical Interconnections in the Cat Visual System: Relation to the Mechanisms of Information Processing. In: Visual Neuroscience (J.D. Pettigrew, K.J. Sanderson and W.R. Levick, Eds.), pp. 290–314. New York: Cambridge UK.Google Scholar
  44. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. and Reitboeck, H.J. (1988) Coherent Oscillations: A Mechanism of Feature Linking in the Visual Cortex? Biol. Cybern., 60:121–130.Google Scholar
  45. Eckhorn, R., Frien, A., Bauer, R., Woelbern, T. and Kehr, H. (1993) High Frequency (60–90 Hz) Oscillations in Primary Visual Cortex of awake Monkey. Neuro Report. 4:243–246.Google Scholar
  46. Engel, A.K., König, P., Gray, C.M. and Singer, W. (1990) Stimulus-Dependent Neuronal Oscillations in Cat Visual Cortex: Inter-Columnar Interaction as Determined by Cross-correlation Analysis. Eur. J. Neurosci., 2:588–606.Google Scholar
  47. Engel, A.K., Kreiter, A.K., König, P. and Singer, W. (1991a) Synchronization of Oscillatory Neuronal Responses Between Striate and Extrastriate Visual Cortical Areas of the Cat. Proc. Natl. Acad. Sci, 88:6048–6052.Google Scholar
  48. Engel, A.K., König, P., Kreiter, A.K. and Singer, W. (1991b) Interhemispheric Synchronization of Oscillatory Responses in Cat Visual Cortex. Science, 252:1177–1179.Google Scholar
  49. Engel, A.K., König, P. and Singer, W. (1991c) Direct Physiology Evidence for Scene Segmentation by Temporal Coding. Proc. Natl, Acad. Sci., 88:9136–9140.Google Scholar
  50. Felleman, D.J. and Van Essen, D.C. (1991) Distributed Hierarchical Processing in the Primate Cerebral Cortex. Cerebral Cortex, 1(1):1–47.Google Scholar
  51. Ferster, D. and LeVay, S. (1978) The Axonal Arborizations of Lateral Geniculate Neurons in the Striate Cortex of the Cat. J. Comp. Neurol., 182:923–944.Google Scholar
  52. Ferster, D. (1986) Orientation Selectivity of Synaptic Potentials in Neurons of Cat Primary Visual Cortex. J. Neurosci., 6(5):1284–1301.Google Scholar
  53. Fox, S.E. and Ranck, J.B. (1981) Electrophysiological Characteristics of Hippocampal Complex-Spike Cells and Theta Cells, Exp. Brain Res., 41:399–410.Google Scholar
  54. Fox, S.E. and Ranck, J.B. (1981) Distribution in Space and Time of Prepyriform Electrical Activity., J. Neurosphysiol. 22:644–666.Google Scholar
  55. Freeman, W.J. (1959) Distribution in Space and Time of Prepyriform Electrical Activity., J. Neurophysiol., 22:644–666.Google Scholar
  56. Freeman, W.J. (1960) Correlation of Electrical Activity of Prepiriform Cortex and Behavior in Cat. J. Neurophysiol., 23:111–131.Google Scholar
  57. Freeman, W.J. (1968) Analog Simulation of Prepiriform Cortex in the Cat, Math Bio Sci., 2:181–190.Google Scholar
  58. Freeman, W.J. (1974) Average Transmission Distance from Mitral-Tufted to Granule Cells in Olfactory Bulb. Electroenceph. and Clinical Neurophysiol, 36:609–618.Google Scholar
  59. Freeman, W.J. (1975) Mass Action in the Nervous System. Academic Press, New York.Google Scholar
  60. Freeman, W.J. (1978a) Spatial Properties of an EEG Event in the Olfactory Bulb and Cortex. Electroenceph. and Clinical Neurophysiol., 44:586–605.Google Scholar
  61. Freeman, W.J. (1978b) Spatial Frequency Analysis of an EEG Event in the Olfactory Bulb. In: Multidisciplinary Perspectives in Event-Related Brain Potential Research, D.A. Otto (Ed.), pp. 531–546, U.S. Government printing Office, Washington, DC, EPA-600/9-77-043.Google Scholar
  62. Freeman, W.J. (1979) Nonlinear Dynamics of Paleocortex Manifested in the Olfactory EEG. Biol. Cybern., 35:21–37.Google Scholar
  63. Freeman, W.J. and Schneider, W. (1982) Changes in Spatial Patterns of Rabbit Olfactory EEG with Conditioning to Odors. Psychophysiol., 19(l):44–56.Google Scholar
  64. Freeman, W.J. (1985) Analytic Techniques Used in the Search for the Physiological Basis for the EEG. In: Gevins, A. Remond, A. (eds) Handbook of Electroencephalography and Clinical Neurophysiology, vol 3A, Part 2, Chap. 18, Elsevier, Amsterdam.Google Scholar
  65. Freemman, W.J. and Skarda, C.A. (1985) Spatial EEG Patterns, Non-linear Dynamics and Perception: the Neo-Sherringtonian View. Brain Res. Reviews, 10:147–175.Google Scholar
  66. Freeman, W.J. and Viana Di Prisco, G. (1986) EEG Spatial Pattern Differences with Discriminated Odors Manifest Choatic and Limit Cycle Attractors in Olfactory Bulb of Rabbits. In: Brain Theory, G. Palm and A. Aertsen (eds.), Springer-Verlag, Berlin Heidelberg, pp. 97–119.Google Scholar
  67. Freeman, W.J. (1991) The Physiology of Perception. Sci. Am., 264(2):78–85.Google Scholar
  68. Fuster, J.M., Herz, A. and Creutzfeldt, O.D. (1965) Interval Analysis of Cell Discharge in Spontaneous and Optically Modulated Activity in the Visual System. Arch. Ital. Biol., 103:159–177.Google Scholar
  69. Gaal, G., Sanes, J.N. and Donoghue, J.P. (1992) Motor cortex Oscillatory Neural Activity During Voluntary Movement in Macaca Fascicularis. Soc. Neurosci. Abs., 18:355.14.Google Scholar
  70. Galambos, R., Makeig, S. and Talmachoff, P. (1981) A 40-Hz Auditory Potential Recorded From the Human Scalp. Proc. Nat. Acad. Sci., 78:2643–2647.Google Scholar
  71. Ghose, G.M. and Freeman, R.D. (1992) Oscillatory Discharge in the Visual System: Does it have a Functional Role? J. Neurophysiol., 68:1558–1574.Google Scholar
  72. Gochin, P.M., Miller, E.K., Cross, C.G., Gesterin, G.L. (1991) Functional Interactions Among Neurons in Inferior Temporal Cortex of the Awake Macaque. Exp Brain Res. 84:505–516.Google Scholar
  73. Gray, C. and Singer, W. (1987) Stimulus-Specific Neuronal Oscillations in the Cat Visual Cortex: A Cortical Functional Unit. Soc. Neurosci. Abstracts, 13:404.3.Google Scholar
  74. Gray, C.M. and Skinner, J.E. (1988a) Centrifugal Regulation of Neuronal Activity in the Olfactory Bulb of the Waking Rabbit as Revealed by Reversible Cryogenic Blockade. Exp. Brain Res., 69:378–386.Google Scholar
  75. Gray, C.M. and Skinner, J.E. (1988b) Field Potential Response Changes in the Rabbit Olfactory Bulb Accompany Behavioral Habituation During the Repeated Presentation of Unreinforced Odors. Exp. Brain Res., 73:189–197.Google Scholar
  76. Gray, C.M. and Singer, W. (1989) Stimulus-Specific Neuronal Oscillations in Orientation Columns of Cat Visual Cortex. Proc. Nat. Acad. Sci., 86:1698–1702.Google Scholar
  77. Gray, C.M., König, P., Engel, A.K. and Singer, W. (1989) Stimulus-Specific Neuronal Oscillations in Cat Visual Cortex Exhibit Inter-Columnar Synchronization Which Reflects Global Stimulus Properties. Nature, 338:334–337.Google Scholar
  78. Gray, C., Engel, A.K., König, P. and Singer, W. (1990) Stimulus-Dependent Neuronal Oscillations in Cat Visual Cortex: Receptive Field Properties and Feature Dependence. Eur. J. Neurosci., 2:607–619.Google Scholar
  79. Gray, C.M., Engel, A.K., König, P. and Singer, W. (1992a) Synchronization of Oscillatory Neuronal Responses in Cat Striate Cortex: Temporal Properties, Visual Neuroscience, 8:337–347.Google Scholar
  80. Gray, C.M., Engel, A.K., König, P. and Singer, W. (1992b) Mechanisms Underlying the Generation of Neuronal Oscillations in Cat Visual Cortex. In: Induced Rhythmicities in the Brain, T. Bullock and E. Basar (Eds.). In Press.Google Scholar
  81. Gray, CM. and Viana Di Prisco, G. (1993) Properties of Stimulus-Dependent Rhythmic Activity of Visual Cortical Neurons in the Alert Cat. Soc. Neurosci. Abs., 19:359.8.Google Scholar
  82. Green, J.D. and Arduini, A. (1954) Hippocampal Electrical Activity in Arousal. J. Neurophysiol. 17:533–557.Google Scholar
  83. Haberly, L.B. and Price, J.L. (1978) Association and Commissural Fiber Systems of the Olfactory Cortex of the Rat: Systems Originating in the Piriform Cortex and Adjacent Areas. J. comp. Neurol., 178:711–740.Google Scholar
  84. Haberly, L.B. and Bower, J.M. (1984) Analysis of Association Fiber System in Piriform Cortex With Intracullar Recording and Staining Techniques. J. Neurophysiol., 51(1):90–112.Google Scholar
  85. Haberly, L.B. and Bower, J.M. (1989) Olfactory Cortex: Model Circuit for Study of Associative Memory? TINS, 12(7):258–264.Google Scholar
  86. Hubel, D.H. and Wiesel, T.N. (1965) Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol., 28:229–289.Google Scholar
  87. Huerta, P.T. and Lisman, J.E. (1993) Heightened Synaptic Plasticity of Hippocampal CA1 Neurons During a Cholinergically Induced Rhythmic State. Nature, 364:723–725.Google Scholar
  88. Hughes, J.R., Hendrix, D.E. Wetzel, N.S. and Johnson, J.W. (1969) Correlations between electrophysiological Activity from the human olfactory bulb and the subjective response to odoriferous stimuli. In: Olfaction and laste III., Pfaffman, C. (Ed.), New York, Rockefeller.Google Scholar
  89. Jagadeesh, B., Gray, C.M. and Ferster, D. (1992) Visually-Evoked Oscillations of Membrane Potential in Neurons of Cat Striate Cortex Studied with In Vivo Whole Cell Patch Recording. Science, 257:552–554.Google Scholar
  90. Jung, R. and Kornmuller, A. (1938) Eine Methodik der Abteilung Lokalsierter Potential Schwankingen aus Subcorticalen Hirnyebieten. Arch. Psychiat. Neuroenkr., 109:1–30.Google Scholar
  91. Kishi, K., Mori, K. and Ojima, H. (1984) Distribution of Local Axon Collaterals of Mitral, Displayed Mitral, and Tufted Cells in the Rabbit Olfactory Bulb. J. comp. Neurol., 225:511–526.Google Scholar
  92. König, P. and Schulen, T.B. (1991) Stimulus-Dependent Assembly Formation of Oscillatory Responses: I. Synchronization. Neural comp., 3:155–166.Google Scholar
  93. König, P., Engel, A.K. and Singer, W. (1994) The Relation Between Oscillatory Activity and Long-Range Synchronization in Cat Visual Cortex. Proc. Natl. Acad. Sci., In Press.Google Scholar
  94. Keiter, A.K. and Singer, W. (1992) Oscillatory Neuronal Responses in the Visual Cortex of the Awake Macaque Monkey, Eur. J. Neurosci., 4:369–375.Google Scholar
  95. Kreiter, A.K., Engel, A.K. and Singer, W. (1992) Stimulus Dependent Synchronization in the Caudal Superior Temporal Sulcus of Macaque Monkeys. Soc. Neurosci. Abs., 18:11.11.Google Scholar
  96. Kuperstein, M., Eichenbaum, H. and Van DeMark, T. (1986) Neural Group Properties in the Rat Hippocampus During the Theta Rhythm. Exp. Brain Res., 61:438–442.Google Scholar
  97. Laufer, M. and Verzeano, M. (1967) Periodic Activity in the Visual System of the Cat. Vision Res., 7:215–229.Google Scholar
  98. Leung, L.S. (1992) Fast (Beta) Rhythms in the Hippocampus: A Review. Hippocampus, 2(2):93–98.Google Scholar
  99. Libet, B. and Gerard, R.W. (1939) Control of the Potential Rhythm of the Isolated Frog Brain. J. Neurophysiol., 2:153–169.Google Scholar
  100. Livingstone, M.S. (1991) Visually Evoked Oscillations in Monkey Striate Cortex. Soc. Neurosci. Abstracts, 17:73.3.Google Scholar
  101. Livingstone, M.S. and Hubel, D.H. (1988) Segregation of Form, Color, Movement, and Depth: Anatomy, Physiology, and Perception. Science 240:740–749.Google Scholar
  102. Llinas, R. and Yarom, Y. (1986) Oscillatory Properties of Guinea-Pig Inferior Olivary Neurons and Their Pharmacological Modulation: An In-Vitro Study. J. Physiol., 376:163–182.Google Scholar
  103. Llinas, R.R. (1988) The Intrinsic Electrophysiological Properties of Mammalian Neurons: Insights into Central Nervous system Function. Science, 242:1654–1664.Google Scholar
  104. Llinas, R.R., Grace, A.A. and Yarom, Y. (1991) In Vitro Neurons in Mammalian Cortical Layer 4 Exhibit Intrinsic Oscillaltory Activity in the 10- to 50-Hz Fequency Range. Proc. Natl. Acad. Sci., 88:897–901.Google Scholar
  105. Lund, J.S., Henry, G.H., MacQueen, C.L. and Harvey, A.R. (1979) Anatomical Organization of the Primary Visual Cortex (Area 17) of the Cat: A Comparison with Area 17 of the Macaque Monkey. J. comp. Neurol., 184:599–618.Google Scholar
  106. Malsburg, C. von der (1981) The Correlation Theory of Brain Function. Internal Report, Max-Planck-Institute of Biophysical Chemistry, Gottingen, West Germany.Google Scholar
  107. Malsburg, C. von der. (1985) Nervous Structures with Dynamical Links. Ber. Bunsenges. Phys. Chem., 89:703–710.Google Scholar
  108. Malsburg, C. von der and Schneider, W. (1986) A neural cocktail-party processor. Biol. Cybern., 54:29–40.Google Scholar
  109. Martin, K.A.C. (1984) Neuronal Circuits in Cat Striate Cortex. In: Cerebral Cortex, volume 2, Functional Properties of Cortical Cells. E.G. Jones and A. Peters (Eds.), Plenum Press, New York.Google Scholar
  110. McCormick, D.A. and Pape, H. (1990) Properties of a Hyperpolarization-Activated Cation current and its role in Rhythmic Oscillation in Thalamic Relay Neurones. Journal of Physiology. 431:291–318.Google Scholar
  111. McCormick, D.A., Gray, C.M. and Wang, Z. (1993) Chattering Cells: A New Physiological Subtype Which May Contribute to 20–60 Hz Oscillations in Cat Visual Cortex. Soc. Neurosci. Abs. 19:359.9.Google Scholar
  112. Milner, B. (1966) Amesia Following Operation of the Temporal Lobes. In: C.W.M. Whitty and O.L. Zangwill (Eds.), Amnesia. London: Butterworths, pp. 109–133.Google Scholar
  113. Milner, P. (1974) A Model for Visual Shape Recognition. Psychological Review, 81(6):521–535.Google Scholar
  114. Mitchell, S.J. and Ranck, J.B. (1980) Generation of Theta Rhythm in Medial Entorhinal Cortex of Freely Moving Rats. Brain Res., 178:49–66.Google Scholar
  115. Montaron, M., Bouyer, J., Rougeul, A. and Buser, P. (1982) Ventral Mesencephalic Tegmentum (VMT) Controls Electrocortical Beta Rhythms and Associated Attentive Behavior in the Cat. Behavioural Brain Research 6:129–145.Google Scholar
  116. Munemori, J., Hara, K., Kimura, M. and Sato, R. (1984) Statistical Features of Impulse Trains in Cat's Lateral Geniculate Neurons. Biol. Cybern., 50:167–172.Google Scholar
  117. Murthy, V.N., Chen, D.F. and Fetz, E.E. (1992) Spatial Extent and Behavioral Dependence of Coherence of 25–35 Hz Oscillations in Primate Sensorimotor Cortex. Soc. Neurosci. Abs., 18:355.12.Google Scholar
  118. Murthy, V.N. and Fetz, E.E. (1992) Coherent 25–35 Hz Oscillations in the Sensorimotor Cortex of the Awake Behaving Monkey. Proc. Natl. Acad. Sci., 89:5670–5674.Google Scholar
  119. Murthy, V.N., Aoki, F. and Fetz, E.E. (1994) Synchronous Oscillations in Sensorimotor Cortex of Awake Monkeys and Humans. In: Oscillatory Event-Related Brain Dynamics (Eds. C. Pantev, T. Elbert and B. Lutkenhoener), Plenum Publishing Corp., In Press.Google Scholar
  120. Nelson, J.I., Salin, P.A., Munk, M.H.-J., Arzi, M. and Bullier, J. (1992) Spatial and Temporal Coherence in Cortico-Corrtical Connections: A Cross-Correlation Study in Areas 17 and 18 in the Cat. Visual Neuroscience, 9:001–017.Google Scholar
  121. Nunez, A, Garcia-Austt, E. and Buno, W. (1987) Intracellular Theta-Rhythm Generation in Identified Hippocampal Pyramids. Brain Res., 416:289–300.Google Scholar
  122. Pantev, C., Makeig, S., Hoke, M., Galambos, R., Hampson, S. and Galen, C. (1991) Human Auditory Evoked Gamma-Band Magnetic Fields. Proc. Natl. Acad. Sci., 88:8996–9000.Google Scholar
  123. Pavlides, C., Greenstein, Y.J., Grudman, M. and Winson, J. (1988) Long-term Potentiation in the Dentate Gyrus is Induced Preferentially on the Positive Phase of Theta Rhythm. Brain Res., 439:383–387.Google Scholar
  124. Payne, B.R. (1993) Evidence for Visual Cortical Area Homologs in Cat and Macaque Monkey. Cerebral Cortex. 3:1–25.Google Scholar
  125. Perez-Borja, C., Tyce, F.A., McDonald, C. and Uihlein, A. (1961) Depth Electrographic Studies of a Focal Fast Response to Sensory Stimulation in the Human. Electroenceph. Clin. Neurophysiol., 13:695–702.Google Scholar
  126. Petsche, H., Stumpf, G. and Gogolak, G. (1962) The Significance of the Rabbit's Septum as a Relay Station Between the Midbrain and the Hippocampus. Electroenceph. Clin. Neurophysiol., 19:25–33.Google Scholar
  127. Petsche, H., Gogolak, G. and Van Zwieten, P.A. (1965) Rhythmicity of Septal Cell Discharges at Various Levels of Reticular Excitation. Electroenceph. Clin. Neurophysiol., 19:25–33.Google Scholar
  128. Pfurtscheller, G. and Neuper, C. (1992) Simultaneous EEG 10 Hz Desynchronization and 40 Hz Synchronization During Finger Movements. NeuroReport, 3:1057–1060.Google Scholar
  129. Rall, W., Shepherd, G.M., Reese, T.S. and Brightman, M.W. (1966) Dendrodendritic Synaptic Pathway for Inhibition in the Olfactory Bulb. Exp. Neurol., 14:44–56.Google Scholar
  130. Rall, W. and Sphered, G.M. (1968) Theoretical Reconstruction of Field Potentials and Dendrodendritic Synaptic Interactions in Olfactory Bulb. J. Neurophysiol., 31:884–915.Google Scholar
  131. Ribary, U., Joannides, A.A., Singh, K.D., Hasson, R., Bolton, J.P.R., Lado, E, Mogilner, A. and Llinas, R. (1991) Magnetic Field Tomography of Coherent Thalamocortical 40 Hz Oscillations in Humans. Proc. Natl. Acad. Sci., 88:11037–11041.Google Scholar
  132. Rosenquist, A.C. (1985) Connections of Visual Cortical Areas in the Cat. In: Cerebral Cortex, A. Peters and E.G. Jones, (Eds.), Plenum, New York, pp. 81–117.Google Scholar
  133. Rougeul, A., Bouyer, J.J., Dedet, L. and Debray, O. (1979) Fast Somato-Parietal Rhythms During Combined Focal Attention and Immobility in Baboon and Squirrel Monkey. Electro. Clin. Neuorphysiol., 46:310–319.Google Scholar
  134. Sanes, J.N. and Donoghue, J.P. (1993) Oscillations in Local Field Potentials of the Primate Motor Cortex During Voluntary Movement. Proc. Natl. Acad. Sci., 90:4470–4474.Google Scholar
  135. Schwarz, C. and Bolz, J. (1991) Functional Specificity of a Long-range Horizontal Connection in Cat Visual Cortex: A Cross-Correlation Study. Journal of Neuroscience. 11(10):2995–3007.Google Scholar
  136. Schoenfeld, T.A., Marchand, J.E. and Macrides, F. (1985) Topographic Organization of Tufted Cell Axonal Projections in the Hamster Main Olfactory Bulb: An Intrabulbar Associational System. J. Comp. Neurol., 235:503–518.Google Scholar
  137. Sem-Jacobsen, C.W., Petersen, M.C., Dodge, H.W., Lazarte, J.A. and Holman, C.B. (1956) Electroencephalographic Rhythms From the Depths of the Parietal, Occipital and Temporal Lobes in Man. Electroenceph. Clin Neurophysiol., 8:263–278.Google Scholar
  138. Sereno, M.I. and Allman, J.M. (1991) Cortical Visual Areas in Mammals. In: The Neural Basis of Visual Function, A. Leventhal (Ed.), MacMillan, pp. 160–172.Google Scholar
  139. Shepherd, G.M. (1972) Synaptic Organization of the Mammalian Olfactory Bulb Physiol. Rev., 52:864–917.Google Scholar
  140. Sillito, A.M., Jones, H.E. and Davis, J. (1993) Corticofugal Feedback and Stimulus-Dependent Correlations in the Firing of Simultaneously Recorded Cells in the Dorsal Lateral Geniculate. Soc. Neurosci. Abs., 19:218.5.Google Scholar
  141. Silva, L.R. Amitai, Y. and Connors, B.W. (1990) Intrinsic Oscillations of Neocortex Generated by Layer 5 Pyramidal Neurons. Science, 251:432–435.Google Scholar
  142. Singer, W. (1990) Search For Coherence: A Basic Principle of Cortical Self-Organization. Concepts in Neurosci., 1(1):1–26.Google Scholar
  143. Singer, W. (1993) Synchronization of Cortical Activity and Its Putative Role in Information Processing and Learning. Ann. Rev. Physiol., 55:349–374.Google Scholar
  144. Spear, P. (1991) Functions of Extrastriate Visual Cortex in Non-Primate Sciences. In: The Neural Basis of Visual Function, A. Leventhal (Ed.), MacMillan, pp. 339–370.Google Scholar
  145. Sporns, O., Gaily, J.A., Reeke, G.N. and Edelman, G.M. (1989) Reentrant Signaling Among Simulated Neuronal Groups Leads to Coherency in Their Oscillatory Activity. Proc. Natl. Acad. Sci., 86:7265–7269.Google Scholar
  146. Spons, O., Tononi, G. and Edelman, G.M. (1991) Modeling Perceptual Grouping and Figure-Ground Segregation of Means of Active Reentrant Connections. Proc. Natl. Acad. Sci., 88:129–133.Google Scholar
  147. Stanton, P.K. and Sejnowski, T.J. (1989) Associative Longterm Depression in the Hippocampus Induced by Hebbian Covariance. Nature, 339:215–218.Google Scholar
  148. Steriade, M., Jones, E.G. and Llinas, R.R. (1990) Thalamic Oscillations and Signaling. John Wiley and Sons, New York.Google Scholar
  149. Steriade, M., McCormick, D.A. and Sejnowski, T.J. (1993) Thalamocortical Oscillations in the Sleeping and Aroused Brain. Science, 262:679–685.Google Scholar
  150. Takmamaki, N. Abe, K. and Nojyo, Y. (1988) Three-Dimensional Analysis of the Whole Axonal Arbors Originating from Single CA2 Pyamidal Neurons in the Rat Hippocampus with the Aid of a Computer Graphic Technique. Brain Res., 452:255–272.Google Scholar
  151. Thommesen, G. (1978) The Spatial Distribution of Odorinduced Potentials in the Olfactory Bulb of Char and Trout (Salmonidae). Acta Physiol. Scand., 102:205–217.Google Scholar
  152. Tombol, T. and Petsche, H. (1969) The Histological Organization of the Pacemaker for the Hippocampal Theta Rhythm in the Rabbit. Brain Res., 12:414–426.Google Scholar
  153. Tovee, M.J. and Rolls, E.T. (1992) Oscillatory Activity is Not Evident in the Primate Temporal Visual Cortex with Static Stimuli. Neuroreport, 3:369–372.Google Scholar
  154. Toyama, K., Kimura, M. and Tanaka, K. (1981a) Crosscorrelation Analysis of Interneuronal Connectivity in Cat Visual Cortex. J. Neurophysiol., 46(2):191–201.Google Scholar
  155. Toyama, K., Kimura, M. and Tanaka, K. (1981b) Organization of Cat Visual Cortex as Investigated by Crosscorrelation Technique. J. Neurophysiol., 46(2):202–213.Google Scholar
  156. Traub, R.D., Miles, R. and Wong, R.K.S. (1989) Model of the origin of rhythmic population oscillations in the hippocampal slice. Science, 243:1319–1325.Google Scholar
  157. Ts'o, D.Y., Gilbert, C.D. and Wiesel, T.N. (1986) Relationships Between Horizontal interactions and Funtional Architecture in Cat Striate Cortex as Revealed by Crosscorrelation Analysis. J. Neurosci., 6(4):1160–1170.Google Scholar
  158. Ts'o, D.Y. and Gilbert, C.G. (1988) The Organization of Chromatic and Spatial Interactions in the Primate Striate Cortex. The Journal of Neuroscience. 8(5):1712–1727.Google Scholar
  159. T'so, D.Y., Frostig, R.D., Lieke, E.E. and Grinvald, A. (1990) Functional Organization of Primate Visual Cortex Revealed by High Resolution Optical Imaging. Science, 249:417–420.Google Scholar
  160. Vanderwolf, C.H. (1969) Hippocampal Electrical Activity and Voluntary Movement in the Rat. Electroenceph. Clin. Neurophysiol., 26:407–418.Google Scholar
  161. von Krosigk, M., Bal, T. and McCormick, D.A. (1993) Cellular Mechanisms of a Synchronized Oscillation in the Thalamus. Science, 61:316–364.Google Scholar
  162. Willey, T.J. (1973) The Ultrastructure of the Cat Olfactory Bulb. J. comp. Neurol., 152:211–232.Google Scholar
  163. Wilson, M. and Bower, J.M. (1992) Cortical Oscillations and Temporal Interactions in a Computer Simulation of Piriform Cortex. Journal of Neurophysiology. 67(4):981–995.Google Scholar
  164. Wilson, M.A. and McNaughton, B.L. (1993) Dynamics of the Hippocampal Ensemble Code for Space. Science, 261:1055–1058.Google Scholar
  165. Wilson, H.R. and Cowan, J.D. (1972) Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons. Biophys. J., 12:1–24.Google Scholar
  166. Ylinen, A., Sik, A., Bragin, A., Jando, G. and Buzsaki, G. (1993) Intracellular Correlates of Hippocampal Sharp Wave Bursts In Vivo. Soc. Neurosci. Abs., 19:148.4.Google Scholar
  167. Young, M.P., Tanaka, K. and Yamane, S. (1992) On Oscillating Neuronal Responses in the Visual Cortex of the Monkey. Journal of Neurophysiology, 67(6):1464–1474.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Charles M. Gray
    • 1
  1. 1.The Center for Neuroscience, Department of Neurobiology, Physiology and BehaviorUniversity of CaliforniaDavis

Personalised recommendations