Journal of Computational Neuroscience

, Volume 2, Issue 4, pp 291–298 | Cite as

Pyramidal cell-to-inhibitory cell spike transduction explicable by active dendritic conductances in inhibitory cell

  • Roger D. Traub
  • Richard Miles


In the guinea-pig hippocampal CA3 region, the synaptic connection from pyramidal neurons tostratum pyramidale inhibitory neurons is remarkable. Anatomically, the connection usually consists of a single release site on an interneuronal dendrite, sometimes 200 μm or more from the soma. Nevertheless, the connection is physiologically powerful, in that a single presynaptic action potential can evoke, with probability 0.1 to 0.6, a postsynaptic action potential with latency 2 to 6 ms. We construct a model interneuron and show that the anatomical and physiological observations can be reconciled if the interneuron dendrites are electrically excitable. Excitable dendrites could also account for depolarization-induced amplification of the pyramidal cell-interneuron EPSP in the voltage range subthreshold for spike generation.


recurrent excitation synaptic integration dendritic electrogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arancio O, Korn H, Gulyas A, Freund T, Miles R (1994) Excitatory synaptic connections onto rat hippocampal inhibitory cells may involve a single transmitter release site.J. Physiol. 481:395–405.Google Scholar
  2. Benardo LS, Masukawa LM, Prince DA (1982) Electrophysiology of isolated hippocampal pyramidal dendrites.J. Neurosci. 2:1614–1622.Google Scholar
  3. Buhl EH, Han Z-S, Lörinczi Z, Stezhka VV, Karnup SV, Somogyi P (1994) Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus.J. Neurophysiol. 71:1289–1307.Google Scholar
  4. Buzsáki G, Eidelberg E (1983) Phase relations of hippocampal projection cells and interneurons to theta activity in the anesthetized rat.Brain Res. 266:334–339.Google Scholar
  5. Contreras D, Curró Dossi R, Steriade M (1993) Electrophysiological properties of cat reticular thalamic neurones in vivo.J. Physiol. 470:273–294.Google Scholar
  6. Gulyás AI, Miles R, Hájos N, Freund T (1993) Precision and variability in postsynaptic target selection of inhibitory cells in the hippocampal CA3 region.Eur. J. Neurosci. 5:1729–1751.Google Scholar
  7. Gulyás AI, Miles R, Sik A, Tóth K, Tamamaki N, Freund TF (1993) Hippocampal pyramidal cells excite inhibitory neurons through a single release site.Nature 366:683–687.Google Scholar
  8. Hestrin S (1993) Different glutamate receptor channels mediate fast excitatory synaptic currents in inhibitory and excitatory cortical neurons.Neuron 11:1083–1091.Google Scholar
  9. Hillman D, Chen S, Aung TT, Cherksey B, Sugimori M, Llinás RR (1991) Localization ofP-type calcium channels in the central nervous system.Proc. Natl. Acad. Sci. USA 88:7076–7080.Google Scholar
  10. Huguenard JR, Hamill OP, Prince DA (1988) Developmental changes in Na+ conductances in rat neocortical neurons: Appearance of a slowly inactivating component.J. Neurophysiol. 59:778–795.Google Scholar
  11. Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics.J Neurosci. 10:3178–3182.Google Scholar
  12. Kim HG, Connors BW (1993) Apical dendrites of the neocortex: Correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology.J. Neurosci. 13:5301–5311.Google Scholar
  13. Knöpfel T, Gähwiler BH (1992) Activity-induced elevations of intracellular calcium concentration in pyramidal and nonpyramidal cells of the CA3 region of rat hippocampal slice cultures.J. Neurophysiol. 68:961–963.Google Scholar
  14. Knowles WD, Schwartzkroin PA (1981) Local circuit synaptic interactions in hippocampal brain slices.J. Neurosci. 1:318–322.Google Scholar
  15. Kuno M, Llinás R (1970a) Enhancement of synaptic transmission by dendritic potentials in chromatolyzed motoneurones of the cat.J. Physiol. 210:807–821.Google Scholar
  16. Kuno M, Llinás R (1970b) Alterations of synaptic action in chromatolyzed motoneurones of the cat.J. Physiol. 210:823–838.Google Scholar
  17. Lacaille J-C (1991) Postsynaptic potentials mediated by excitatory and inhibitory amino acids in interneurons ofstratum pyramidale of the CA1 region of rat hippocampal slicesin vitro.J. Neurophysiol. 66:1441–1454.Google Scholar
  18. Llinás R, Nicholson C (1971) Electrophysiological properties of dendrites and somata in alligator Purkinje cells.J. Neurophysiol. 34:532–551.Google Scholar
  19. Llinás R, Sugimori M (1980) Electrophysiological properties ofin vitro Purkinje cell dendrites in mammalian cerebellar slices.J. Physiol. 305:197–213.Google Scholar
  20. Maekawa K, Purpura DP (1967) Properties of spontaneous and evoked synaptic activities of thalamic ventrobasal neurons.J. Neurophysiol. 30:360–381.Google Scholar
  21. Major G (1992) The physiology, morphology and modelling of cortical pyramidal neurones. D.Phil. Thesis, Merton College, Oxford University.Google Scholar
  22. McBain C, Dingledine R (1993) Heterogeneity of synaptic glutamate receptors on CA3 stratum radiatum interneurones of rat hippocampus.J. Physiol. 462:373–392.Google Scholar
  23. Michelson HB, Wong RKS (1991) Excitatory synaptic responses mediated by GABAA receptors in the hippocampus.Science 253:1420–1423.Google Scholar
  24. Miles R (1990) Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea-pigin vitro. J. Physiol. 428:61–77.Google Scholar
  25. Miles R (1991) Tetanic stimuli induce a short-term enhancement of recurrent inhibition in the CA3 region of guinea-pig hippocampusin vitro.J. Physiol. 443:669–682.Google Scholar
  26. Miles R, Wong RKS (1984) Unitary inhibitory synaptic potentials in the guinea-pig hippocampusin vitro.J. Physiol. 356:97–113.Google Scholar
  27. Miles R, Wong RKS (1987) Inhibitory control of local excitatory circuits in the guinea-pig hippocampus.J. Physiol. 388:611–629.Google Scholar
  28. Misgeld U, Frotscher M (1986) Postsynaptic-GABAergic inhibition of non-pyramidal neurons in the guinea-pig hippocampus.Neuroscience 19:193–206.Google Scholar
  29. Perouansky M, Yaari Y (1993) Kinetic properties of NMDA receptormediated synaptic currents in rat hippocampal pyramidal cellsversus interneurones.J. Physiol. 465:223–244.Google Scholar
  30. Sah P, Hestrin S, Nicoll RA (1990) Properties of excitatory postsynaptic currents recordedin vitro from rat hippocampal interneurones.J. Physiol. 430:605–616.Google Scholar
  31. Sik A, Tamamaki N, Freund TF (1993) Complete axon arborization of a single CA3 pyramidal cell in the rat hippocampus, and its relationship with postsynaptic parvalbumin-containing interneurons.Eur. J. Neurosci. 5:1719–1728.Google Scholar
  32. Spencer WA, Kandel ER (1961) Electrophysiology of hippocampal neurons IV. Fast prepotentials.J. Neurophysiol. 24:272–285.Google Scholar
  33. Stafstrom CE, Schwindt PC, Chubb MC, Crill WE (1985) Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro.J. Neurophysiol. 53:153–170.Google Scholar
  34. Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites.Nature 367:69–72.Google Scholar
  35. Thurbon D, Field A, Redman S (1994) Electrotonic profiles of interneurons in stratum pyramidale of the CA1 region of rat hippocampus.J. Neurophysiol. 71:1948–1958.Google Scholar
  36. Traub RD, Jefferys JGR, Miles R, Whittington MA, Tóth K (1994) A branching dendritic model of a rodent CA3 pyramidal neurone.J. Physiol. 481:79–95.Google Scholar
  37. Traub RD, Jefferys JGR, Whittington MA (1994) Enhanced NMDA conductances can account for epileptiform activities induced by low Mg2+ in the rat hippocampal slice.J. Physiol. 478:379–393.Google Scholar
  38. Traub RD, Llinás R (1977) The spatial distribution of ionic conductances in normal and axotomized motorneurons.Neuroscience 2:829–849.Google Scholar
  39. Traub RD, Miles R (1991)Neuronal Networks of the Hippocampus, New York: Cambridge University Press.Google Scholar
  40. Traub RD, Miles R, Jefferys JGR (1993) Synaptic and intrinsic conductances shape picrotoxin-induced synchronized after-discharges in the guinea-pig hippocampal slice.J. Physiol. 461:525–547.Google Scholar
  41. Traub RD, Wong RKS, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances.J. Neurophysiol. 66:635–650.Google Scholar
  42. Westenbroek RE, Merrick DK, Catterall WA (1989) Differential subcellular localization of theR I andR II Na+ channel subtypes in central neurons.Neuron 3:695–704.Google Scholar
  43. Whittington MA, Traub RD, Jefferys JGR (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation.Nature 373:612–615.Google Scholar
  44. Williams S, Samulack DD, Beaulieu C, Lacaille J-C (1994) Membrane properties and synaptic responses of interneurons located near the stratum lacunosum-moleculare/radiatum border of area CA1 in whole-cell recordings from rat hippocampal slices.J. Neurophysiol. 71:2217–2235.Google Scholar
  45. Wong RKS, Prince DA, Basbaum AI (1979) Intradendritic recordings from hippocampal neurons.Proc. Nat. Acad. Sci. USA 76:986–990.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Roger D. Traub
    • 1
    • 2
  • Richard Miles
    • 3
  1. 1.IBM Research DivisionT.J. Watson Research CenterYorktown HeightsUSA
  2. 2.Department of NeurologyColumbia UniversityNew YorkUSA
  3. 3.Institut PasteurParis Cedex 15France

Personalised recommendations