Letters in Mathematical Physics

, Volume 3, Issue 1, pp 19–27 | Cite as

A mathematical condition for a sublattice of a propositional system to represent a physical subsystem, with a physical interpretation

  • Dirk Aerts
  • Ingrid Daubechies
Article

Abstract

We display three equivalent conditions for a sublattice, isomorphic to aP\((\tilde{H})\), of the propositional systemP(ℋ) of a quantum system to be the representation of a physical subsystem (see [1]). These conditions are valid for dim\(\tilde{H}\)⩾3. We prove that one of them is still necessary and sufficient if dim\(\tilde{H}\)<3. A physical interpretation of this condition is given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Aerts and I. Daubechies, ‘A characterization of subsystems in physics’,Lett. Math. Phys. 3, (1979).Google Scholar
  2. 2.
    D. Aerts and I. Daubechies, ‘Physical Justification for using the tensor product to describe two quantum systems as one joint system’, submitted toHelv. Phys. Acta. Google Scholar
  3. 3.
    C.Piron,Foundations of Quantum Physics, W.A. Benjamin Inc., Reading, Massachusetts, 1976.Google Scholar
  4. 4.
    D. Aerts and I. Daubechies, ‘Structure-preserving maps of a quantum mechanical propositional system’, to be published inHelv. Phys. Acta. Google Scholar
  5. 5.
    D. Aerts and I. Daubechies, ‘A connection between propositional systems in Hilbert space and von Neumann algebras’, to be published inHelv. Phys. Acta. Google Scholar
  6. 6.
    D. Aerts and C. Piron, ‘The role of the modular pairs in the category of complete orthomodular lattice’,Lett. Math. Phys., this issue.Google Scholar
  7. 7.
    J.Dixmier,Les algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1969.Google Scholar

Copyright information

© D. Reidel Publishing Company 1979

Authors and Affiliations

  • Dirk Aerts
    • 1
  • Ingrid Daubechies
    • 1
  1. 1.Theoretische NatuurkundeVrije Universiteit BrusselBrusselBelgium

Personalised recommendations