Letters in Mathematical Physics

, Volume 3, Issue 1, pp 1–10 | Cite as

The role of the modular pairs in the category of complete orthomodular lattice

  • D. Aerts
  • C. Piron
Article

Abstract

We study the modular pairs of a complete orthomodular lattice i.e. a CROC. We propose the concept ofm-morphism as a mapping which preserves the lattice structure, the orthogonality and the property to be a modular pair. We give a characterization of them-morphisms in the case of the complex Hilbert space to justify this concept.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    PironC.,Foundations of Quantum Physics, W. A. Benjamin Inc. Reading, 1976.Google Scholar
  2. 2.
    MackeyG.W., ‘On Infinite-dimensional Linear Spaces’Trans. Amer. Math. Soc. 57, 155 (1945). Our definition of modular pairs corresponds to Mackey's definition of dual modular pairs.Google Scholar
  3. 3.
    BirkhoffG., and vonNeumannJ., ‘The logic of quantum mechanics’,Ann. Math. 37, 823 (1936).Google Scholar
  4. 4.
    KaplanskyI., ‘Any orthocomplemented complete modular lattice is a continuous geometry’,Ann. Math. 61, 524 (1955).Google Scholar
  5. 5.
    MaedaF., and MaedaS.,Theory of Symmetric Lattices, Springer Verlag, Berlin, 1970. Semimodular is calledM *-symmetric by these authors.Google Scholar
  6. 6.
    SchreinerE.A., ‘Modular pairs in orthomodular lattices’,Pacif. J. Math. 19, 519 (1966).Google Scholar
  7. 7.
    Aerts, D., and Daubechies, I., ‘About the structure preserving maps of a quantum mechanical propositional system’, to be published inHelv. Phys. Acta.Google Scholar
  8. 8.
    Aerts, D., and Daubechies, I., ‘Physical justification for using the tensor product to describe two quantum systems as one joint system’, Preprint, Theoretische Natuurkunde V.U.B., Brussel.Google Scholar
  9. 9.
    Aerts, D., and Daubechies, I., ‘A characterization of subsystems in physics’,Lett. Math. Phys., this issue.Google Scholar
  10. 10.
    LorschE.R., ‘On a Calculus of Operators in Reflexive Vector Spaces’,Trans. Amer. Math. Soc. 45, 217 (1939).Google Scholar

Copyright information

© D. Reidel Publishing Company 1979

Authors and Affiliations

  • D. Aerts
    • 1
  • C. Piron
    • 2
  1. 1.Theoretische NatuurkundeVrije Universiteit BrusselBrusselBelgium
  2. 2.Department of Theoretical PhysicsUniversity of GenevaGeneva 4Switzerland

Personalised recommendations