Marine Biology

, Volume 53, Issue 3, pp 249–255

Diel vertical migration bySalpa aspera and its potential for large-scale particulate organic matter transport to the deep-sea

  • P. H. Wiebe
  • L. P. Madin
  • L. R. Haury
  • G. R. Harbison
  • L. M. Philbin
Article

Abstract

In mid-summer 1975 throughout the Western Slope Water of the North Atlantic Ocean, massive numbers ofSalpa aspera performed a diel vertical migration of at least 800 m. This resulted in a movement of 85 to 90% of the total zooplankton biomass out of the upper 500 m during the day. Fecal pellet production and losses from this salp population were estimated to contribute approximately 12 mg C m-2 day-1 to the deep planktonic and benthic populations. If all this organic matter reached the deep-sea floor, it would represent over 100% of the daily deep-sea benthic infauna energy requirements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ahlstrom, E.H. and J.R. Thrailkill: Plankton volume loss with time of preservation. Rep. Calif. coop. ocean. Fish. Invest.9, 57–93 (1963)Google Scholar
  2. Banse, K.: On the vertical distribution of zooplankton in the sea. Prog. Oceanogr.2, 53–125 (1964)Google Scholar
  3. Berner, L.D.: Thaliacea. Calif. coop. ocean. Fish. Invest. Atlas8, 1–322 (1967)Google Scholar
  4. Brattström, H.: OnSalpa fusiformis Cuvier (Thaliacea) in Norwegian coastal and offshore waters. Sarsia48, 71–90 (1972)Google Scholar
  5. Cacchione, D.A., G.T. Rowe and A. Malahoff: Submersible investigation of outer Hudson submarine canyon.In: Sedimentation in canyons, fans and trenches, pp 42–50. Ed. by D.J. Stanley and G. Kelling Stroudsburg, Pennsylvania: Dowden, Hutchinson & Ross 1978Google Scholar
  6. Dayton, P.K. and R.R. Hessler: Role of biological disturbance in maintaining diversity in the deep sea. Deep-Sea Res.19, 199–208 (1972)Google Scholar
  7. Enright, J.T.: Diurnal vertical migration: adaptive significance and timing. Part I. Selective advantages: a metabolic model. Limnol. Oceanogr.22, 856–872 (1977)Google Scholar
  8. Foxton, P.: The distribution and life-history ofSalpa thompsoni Foxton with observations on a related speciesSalpa gerlachei Foxton. Discovery Rep.34, 1–116 (1966)Google Scholar
  9. Franqueville, C.: Macroplancton profond (invertébrés) de la Mediterranée nord-occidentale. Téthys3, 11–55 (1971)Google Scholar
  10. Grassle, J.F. and H.L. Sanders: Life histories and the role of disturbance. Deep-Sea Res.20, 643–659 (1973)Google Scholar
  11. Hamner, W.M.: Underwater observations of bluewater plankton: logistics, techniques, and safety procedures for divers at sea. Limnol. Oceanogr.20, 1045–1051 (1975)Google Scholar
  12. Harbison, G.R. and R.B. Campenot: Effects of temperature on the swimming of salps (Tunicata, Thaliacea): implications for vertical migration. Limnol. Oceanogr. (In press)Google Scholar
  13. — and R.W. Gilmer: The feeding rates of the pelagic tunicatePegea confederata and two other salps. Limnol. Oceanogr.21, 517–528 (1976)Google Scholar
  14. Hardy, A.C. and E.R. Gunther: The plankton of the South Georgia whaling grounds and adjacent waters, 1926–1927. ‘Discovery’ Rep.11, 1–456 (1935)Google Scholar
  15. Mackie, G.O., and Q. Bone: Locomotion and propagated skin impulses in salps (Tunicata: Thaliacea). Biol. Bull. mar. biol. Lab., Woods Hole153, 180–197 (1977)Google Scholar
  16. Mackintosh, N.A.: Distribution of the macroplankton in the Atlantic sector of the Antarctic. ‘Discovery’ Rep.9, 65–160 (1934)Google Scholar
  17. Madin, L.P.: Field studies on the biology of salps (Tunicata: Thaliacea), 208 pp. Ph.D. Thesis, University of California, Davis 1974aGoogle Scholar
  18. — Field observations on the feeding behavior of salps (Tunicata: Thaliacea). Mar. Biol.25, 143–147 (1974b)Google Scholar
  19. Marlowe, C.J., and C.B. Miller: Patterns of vertical distribution and migration of zooplankton at ocean station “P”. Limnol. Oceanogr.20, 824–844 (1975)Google Scholar
  20. McAllister, C.D.: Zooplankton studies at Ocean Weather Station “P” in the northeast Pacific Ocean. J. Fish. Res. Bd Can.18, 1–29 (1961)Google Scholar
  21. Smith, K.L., Jr., and J.M. Teal: Deep-sea benthic community respiration: anin situ study at 1850 meters. Science, N.Y.179, 282–283 (1973)Google Scholar
  22. Thompson, H.: Pelagic tunicates in the plankton of southeastern Australian waters and their place in oceanographical studies. Bull. Coun. scient. ind. Res., Melb.153, 1–56 (1942)Google Scholar
  23. Vinogradov, M.E.: Vertical distribution of oceanic zooplankton, [In Russ.] 319 pp. Moscow: Isdatel' Stvo Nauka 1968. (Translated by Israel Programme for Scientific Translations, 1970)Google Scholar
  24. Wiebe, P.H., K.H. Burt, S. Boyd and A.W. Morton: A multiple opening/closing net and environmental sensing system for sampling zooplankton. J. mar. Res.34, 313–326 (1976)Google Scholar
  25. Youngbluth, M.J.: Vertical distribution and diel migration of euphausiids in the central waters of the eastern South Pacific. Deep-Sea Res.22, 519–536 (1975)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • P. H. Wiebe
    • 1
  • L. P. Madin
    • 1
  • L. R. Haury
    • 1
  • G. R. Harbison
    • 1
  • L. M. Philbin
    • 2
  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.Woods HoleUSA

Personalised recommendations