Advertisement

Marine Biology

, Volume 53, Issue 3, pp 249–255 | Cite as

Diel vertical migration bySalpa aspera and its potential for large-scale particulate organic matter transport to the deep-sea

  • P. H. Wiebe
  • L. P. Madin
  • L. R. Haury
  • G. R. Harbison
  • L. M. Philbin
Article

Abstract

In mid-summer 1975 throughout the Western Slope Water of the North Atlantic Ocean, massive numbers ofSalpa aspera performed a diel vertical migration of at least 800 m. This resulted in a movement of 85 to 90% of the total zooplankton biomass out of the upper 500 m during the day. Fecal pellet production and losses from this salp population were estimated to contribute approximately 12 mg C m-2 day-1 to the deep planktonic and benthic populations. If all this organic matter reached the deep-sea floor, it would represent over 100% of the daily deep-sea benthic infauna energy requirements.

Keywords

Biomass Atlantic Ocean Particulate Organic Matter Massive Number Fecal Pellet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ahlstrom, E.H. and J.R. Thrailkill: Plankton volume loss with time of preservation. Rep. Calif. coop. ocean. Fish. Invest.9, 57–93 (1963)Google Scholar
  2. Banse, K.: On the vertical distribution of zooplankton in the sea. Prog. Oceanogr.2, 53–125 (1964)Google Scholar
  3. Berner, L.D.: Thaliacea. Calif. coop. ocean. Fish. Invest. Atlas8, 1–322 (1967)Google Scholar
  4. Brattström, H.: OnSalpa fusiformis Cuvier (Thaliacea) in Norwegian coastal and offshore waters. Sarsia48, 71–90 (1972)Google Scholar
  5. Cacchione, D.A., G.T. Rowe and A. Malahoff: Submersible investigation of outer Hudson submarine canyon.In: Sedimentation in canyons, fans and trenches, pp 42–50. Ed. by D.J. Stanley and G. Kelling Stroudsburg, Pennsylvania: Dowden, Hutchinson & Ross 1978Google Scholar
  6. Dayton, P.K. and R.R. Hessler: Role of biological disturbance in maintaining diversity in the deep sea. Deep-Sea Res.19, 199–208 (1972)Google Scholar
  7. Enright, J.T.: Diurnal vertical migration: adaptive significance and timing. Part I. Selective advantages: a metabolic model. Limnol. Oceanogr.22, 856–872 (1977)Google Scholar
  8. Foxton, P.: The distribution and life-history ofSalpa thompsoni Foxton with observations on a related speciesSalpa gerlachei Foxton. Discovery Rep.34, 1–116 (1966)Google Scholar
  9. Franqueville, C.: Macroplancton profond (invertébrés) de la Mediterranée nord-occidentale. Téthys3, 11–55 (1971)Google Scholar
  10. Grassle, J.F. and H.L. Sanders: Life histories and the role of disturbance. Deep-Sea Res.20, 643–659 (1973)Google Scholar
  11. Hamner, W.M.: Underwater observations of bluewater plankton: logistics, techniques, and safety procedures for divers at sea. Limnol. Oceanogr.20, 1045–1051 (1975)Google Scholar
  12. Harbison, G.R. and R.B. Campenot: Effects of temperature on the swimming of salps (Tunicata, Thaliacea): implications for vertical migration. Limnol. Oceanogr. (In press)Google Scholar
  13. — and R.W. Gilmer: The feeding rates of the pelagic tunicatePegea confederata and two other salps. Limnol. Oceanogr.21, 517–528 (1976)Google Scholar
  14. Hardy, A.C. and E.R. Gunther: The plankton of the South Georgia whaling grounds and adjacent waters, 1926–1927. ‘Discovery’ Rep.11, 1–456 (1935)Google Scholar
  15. Mackie, G.O., and Q. Bone: Locomotion and propagated skin impulses in salps (Tunicata: Thaliacea). Biol. Bull. mar. biol. Lab., Woods Hole153, 180–197 (1977)Google Scholar
  16. Mackintosh, N.A.: Distribution of the macroplankton in the Atlantic sector of the Antarctic. ‘Discovery’ Rep.9, 65–160 (1934)Google Scholar
  17. Madin, L.P.: Field studies on the biology of salps (Tunicata: Thaliacea), 208 pp. Ph.D. Thesis, University of California, Davis 1974aGoogle Scholar
  18. — Field observations on the feeding behavior of salps (Tunicata: Thaliacea). Mar. Biol.25, 143–147 (1974b)Google Scholar
  19. Marlowe, C.J., and C.B. Miller: Patterns of vertical distribution and migration of zooplankton at ocean station “P”. Limnol. Oceanogr.20, 824–844 (1975)Google Scholar
  20. McAllister, C.D.: Zooplankton studies at Ocean Weather Station “P” in the northeast Pacific Ocean. J. Fish. Res. Bd Can.18, 1–29 (1961)Google Scholar
  21. Smith, K.L., Jr., and J.M. Teal: Deep-sea benthic community respiration: anin situ study at 1850 meters. Science, N.Y.179, 282–283 (1973)Google Scholar
  22. Thompson, H.: Pelagic tunicates in the plankton of southeastern Australian waters and their place in oceanographical studies. Bull. Coun. scient. ind. Res., Melb.153, 1–56 (1942)Google Scholar
  23. Vinogradov, M.E.: Vertical distribution of oceanic zooplankton, [In Russ.] 319 pp. Moscow: Isdatel' Stvo Nauka 1968. (Translated by Israel Programme for Scientific Translations, 1970)Google Scholar
  24. Wiebe, P.H., K.H. Burt, S. Boyd and A.W. Morton: A multiple opening/closing net and environmental sensing system for sampling zooplankton. J. mar. Res.34, 313–326 (1976)Google Scholar
  25. Youngbluth, M.J.: Vertical distribution and diel migration of euphausiids in the central waters of the eastern South Pacific. Deep-Sea Res.22, 519–536 (1975)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • P. H. Wiebe
    • 1
  • L. P. Madin
    • 1
  • L. R. Haury
    • 1
  • G. R. Harbison
    • 1
  • L. M. Philbin
    • 2
  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.Woods HoleUSA

Personalised recommendations