Advertisement

Asymptotics of a time correlation function in multiple recurrent scattering of scalar waves

  • N. M. Temme
  • F. Vitalis
  • B. A. van Tiggelen
  • A. Lagendijk
Original Papers
  • 30 Downloads

Abstract

We consider an integral that recently showed up in the calculation of the time-dependent field-field correlation function of the electric field inside polarizable (dielectric) particles. We derive new integral representations on which numerical algorithms can be based and which give information on the asymptotic behaviour for large values of a time parameter. We interpret the results of the paper in terms of the physical problem.

Keywords

Correlation Function Asymptotic Behaviour Mathematical Method Integral Representation Time Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. A. van Tiggelen and A. Lagendijk,Resonantly induced dipole-dipole coupling in diffusion of classical waves, to be published in Phys. Rev. B (Brief report).Google Scholar
  2. [2]
    B. A. van Tiggelen, A. Tip and A. Lagendijk,Dwell times for light and electrons, J. Phys. A.26 (1993), 1731.Google Scholar
  3. [3]
    R. Loudon,The Quantum Theory of Light, Clarendon, Oxford 1973.Google Scholar
  4. [4]
    N. G. de Bruijn,Asymptotic Methods in Analysis, North Holland, Amsterdam 1974. Reprinted by Dover, New York 1981.Google Scholar
  5. [5]
    V. B. Beresteskii, E. M. Lifshitz and L. P. Pitaevskii,Relativistic Quantum Theory, Pergamon, Oxford 1971.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • N. M. Temme
    • 1
  • F. Vitalis
    • 2
  • B. A. van Tiggelen
    • 2
    • 3
  • A. Lagendijk
    • 2
    • 4
  1. 1.CWIGB AmsterdamThe Netherlands
  2. 2.FOM-AMOLFDB AmsterdamThe Netherlands
  3. 3.Centre d'Expérimentation NumériqueUniversité Joseph Fourier, Maison de Magisteres/CNRSGrenoble Cedex 9France
  4. 4.Van der Waals-Zeeman LaboratoryUniversity of AmsterdamXE AmsterdamThe Netherlands

Personalised recommendations