Homoclinic period blow-up in reversible and conservative systems

  • André Vanderbauwhede
  • Bernold Fiedler
Original Papers


We show that in conservative systems each non-degenerate homoclinic orbit asymptotic to a hyperbolic equilibrium possesses an associated family of periodic orbits. The family is parametrized by the period, and the periodic orbits accumulate on the homoclinic orbit as the period tends to infinity. A similar result holds for symmetric homoclinic orbits in reversible systems. Our results extend earlier work by Devaney and Henrard, and provide a positive answer to a conjecture of Strömgren. We present a unified approach to both the conservative and the reversible case, based on a technique introduced recently by X.-B. Lin.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. A. Coppel,Dichotomies in Stability Theory. Lect. Notes in Math., vol.629, Springer-Verlag, Berlin 1978.Google Scholar
  2. [2]
    R. Devaney,Blue sky catastrophes in reversible and Hamiltonian systems. Indiana Univ. Math. J.,26, 247–263 (1977).Google Scholar
  3. [3]
    R. Devaney,Homodinic orbits in Hamiltonian systems, J. Diff. Eqns.,21, 431–438 (1976).Google Scholar
  4. [4]
    J. Henrard,Proof of a conjecture of E. Strömgren. Celestial Mech.,7, 449–457 (1973).Google Scholar
  5. [5]
    K. Kirchgässner,Nonlinearly resonant surface waves and homoclinic bifurcation. Adv. Appl. Mech.,26, 135–181 (1988).Google Scholar
  6. [6]
    X.-B. Lin,Using Melnikov's method to solve Silnikov's problems. Proc. Roy. Soc. Edinburgh,116A, 295–325 (1990).Google Scholar
  7. [7]
    Z. Nitecki,Differentiable Dynamics. MIT Press, Cambridge 1971.Google Scholar
  8. [8]
    J. Palis,On Morse-Smale dynamical systems. Topology,8, 385–404 (1969).Google Scholar
  9. [9]
    J. Palis and W. de Melo,Geometric Theory of Dynamical Systems. Springer-Verlag, Berlin 1982.Google Scholar
  10. [10]
    K. J. Palmer,Exponential dichotomies and transversal homoclinic points. J. Diff. Eqns.,55, 225–256 (1984).Google Scholar
  11. [11]
    E. Strömgren,Connaissance actuelle des orbites dans le problème des trois corps. Bull. Astron.,9, 87–130 (1933).Google Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • André Vanderbauwhede
    • 1
  • Bernold Fiedler
    • 2
  1. 1.Instituut voor Theoretische MechanicaKrijgslaan 281Belgium
  2. 2.Mathematisches Institut AUniversität StuttgartStuttgart 80Germany

Personalised recommendations