Monotonicity properties of zeros of generalized Airy functions

  • Andrea Laforgia
  • Martin E. Muldoon
Brief Report


We show, among other things, that the positive zeros of a solution ofy+xαy=0,y(0)=0 decrease to 1 asα increases, 0〈α〈∞.


Mathematical Method Monotonicity Property Airy Function Positive Zero Generalize Airy Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Si dimostra, tra l'altro, che gli zeri positivi d'una soiuzione diy+xαy=0,y(0)=0 decrescono al limite 1, quandoα cresce, 0〈α〈∞.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Bôcher,On certain methods of Sturm and their applications to the roots of Bessel's functions, Bull. Amer. Math. Soc.3, 205–213 (1897).Google Scholar
  2. [2]
    C. Comstock,On weighted averages at a jump discontinuity. Quart. Appl. Math.28, 159–166 (1970).Google Scholar
  3. [3]
    Á. Elbert and A. Laforgia,On the square of the zeros of Bessel functions. SIAM J. Math. Anal.15, 206–212 (1984).Google Scholar
  4. [4]
    A. Laforgia and M. E. Muldoon,Inequalities and approximations for zeros of Bessel functions of small order. SIAM J. Math. Anal.14, 383–388 (1983).Google Scholar
  5. [5]
    A. Laforgia and M. E. Muldoon,Monotonicity and concavity properties of zeros of Bessel functions. J. Math. Anal. Appl.98, 470–477 (1984).Google Scholar
  6. [6]
    A. Laforgia and J. Vosmanský,Higher monotonicity properties of generalized Airy functions. Rend. Mat. (7)2, 241–256 (1984).Google Scholar
  7. [7]
    J. T. Lewis and M. E. Muldoon,Monotonicity and convexity properties of zeros of Bessel functions. SIAM J. Math. Anal.8, 171–178 (1977).Google Scholar
  8. [8]
    L. Lorch and P. Szego,Higher monotonicity properties of certain Sturm-Liouville functions. Acta Math.109, 55–73 (1963).Google Scholar
  9. [9]
    E. Makai,On zeros of Bessel functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 602–603, 109–110 (1978).Google Scholar
  10. [10]
    R. C. McCann,Inequalities for the zeros of Bessel functions. SIAM J. Math. Anal.8, 166–170 (1977).Google Scholar
  11. [11]
    M. E. Muldoon,Higher monotonicity properties of certain Sturm-Liouville functions V. Proc. Roy. Soc. Edinburgh Sect. A77, 23–37 (1977).Google Scholar
  12. [12]
    M. E. Muldoon,A differential equations proof of a Nicholson-type formula. Z. Angew. Math. Mech.61, 598–599 (1981).Google Scholar
  13. [13]
    M. E. Muldoon,On the zeros of some special functions: differential equations and Nicholson-type formulas. Proc. Equadiff 6, Brno, 1985; Lect. Notes in Math.1192, 155–160 (1986).Google Scholar
  14. [14]
    L. N. Nosova and S. A. Tumarkin,Tables of generalized Airy functions for the asymptotic solution of the differential equations..., translated by D. E. Brown, Pergamon-McMillan, 1965 (Russian original, Computing Centre of the Academy of Sciences of the USSR, Moscow, 1961).Google Scholar
  15. [15]
    A. D. Smirnov,Tables of Airy functions and special confluent hyper geometric functions for asymptotic solutions of differential equations of the second order, translated from the Russian by D. G. Fry, Pergamon, Oxford 1960.Google Scholar
  16. [16]
    C. A. Swanson and V. B. Headley,An extension of Airy's equation. SIAM J. Appl. Math.15, 1400–1412 (1967).Google Scholar
  17. [17]
    G. Szegö,Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloquium Publications, vol. 23, 1975.Google Scholar
  18. [18]
    G. N. Watson,A treatise on the theory of Bessel functions, 2nd ed., Cambridge University Press, 1944.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1988

Authors and Affiliations

  • Andrea Laforgia
    • 1
  • Martin E. Muldoon
    • 2
  1. 1.Dip. di Matematica ed ApplicazioniUniversità di PalermoPalermoItaly
  2. 2.Dept. of MathematicsYork UniversityNorth YorkCanada

Personalised recommendations