On the computation of invariant manifolds of fixed points

  • A. J. Homburg
  • H. M. Osinga
  • G. Vegter
Original Papers


We present a method for the numerical computation of invariant manifoids of hyperbolic and pseudohyperbolic fixed points of diffeomorphisms. The derivation of this algorithm is based on well-known properties of (almost) invariant foliations. Numerical results illustrate the performance of our method.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. W. Broer and G. Vegter,Bifurcational Aspects of Parametric Resonance, vol. 1 ofDynamics Reported (New Series), chapt. 1, pp. 1–53. Springer Verlag, Berlin-Heidelberg-New York 1992.Google Scholar
  2. [2]
    R. L. Devaney,An Introduction to Chaotic Dynamical Systems. Addison-Wesley Publ Co., Redwood City, CA 1987.Google Scholar
  3. [3]
    G. H. Golub and C. F. Van Loan,Matrix Computations. Johns Hopkins University Press, Baltimore 1983.Google Scholar
  4. [4]
    J. Hadamard,Sur l'itération et les solutions asymptotiques des equations différentielles. Bull. Soc. Math. France,29, 224–228 (1901).Google Scholar
  5. [5]
    M. W. Hirsch, C. C. Pugh, and M. Shub,Invariant Manifolds. Springer-Verlag, Berlin 1977.Google Scholar
  6. [6]
    A. J. Homburg,On the Computation of Hyperbolic Sets and their Invariant Manifolds. Technical Report 68, Institut für Angewandte Analysis und Stochastik, Berlin 1993.Google Scholar
  7. [7]
    F. Ma and T. Küpper,Numerical calculation of invariant manifolds for maps. J. Num. Linear Alg. Appl.,1,2, 141–150 (1994).Google Scholar
  8. [8]
    H. E. Nusse and J. A. Yorke,A procedure for finding numerical trajectories on chaotic saddles. Physica D,36, 137–156 (1989).Google Scholar
  9. [9]
    J. Palis and W. de Melo,Geometric Theory of Dynamical Systems. Springer-Verlag, New York 1982.Google Scholar
  10. [10]
    J. Palis and F. Takens,Hyperbolicity & sensitive chaotic dynamics at homoclinic bifurcations, vol. 35 of Cambridge studies in advanced math. Cambridge University Press 1993.Google Scholar
  11. [11]
    T. S. Parker and L. O. Chua,Practical Numerical Algorithms for Chaotic Systems. Springer-Verlag, Berlin 1989.Google Scholar
  12. [12]
    O. Perron,Ueber Stabilität und Asymptotisches Verhalten der Lösungen eines Systemes endlicher Differenzengleichungen. J. Reine Angew. Math.,161, 41–46 (1929).Google Scholar
  13. [13]
    M. Shub,Global Stability of Dynamical Systems. Springer-Verlag, Berlin 1977.Google Scholar
  14. [14]
    S. van Gils and A. Vanderbauwhede,Center manifolds and contractions on a scale of Banach spaces. J. Funct. Analysis, pp 209–224 (1987).Google Scholar
  15. [15]
    A. Vanderbauwhede,Center Manifolds, Normal Forms and Elementary Bifurcations. In Dynamics Reported, vol. 2, pp 89–170. John Wiley & Sons Ltd and B.G. Teubner, Stuttgart 1989.Google Scholar
  16. [16]
    H. E. S. Westerveld, Numerieke Bepaling van Invariante Variëteiten (in Dutch). Master's thesis, University of Twente 1990.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • A. J. Homburg
    • 1
  • H. M. Osinga
    • 1
  • G. Vegter
    • 1
  1. 1.Dept of Mathematics and Computing ScienceAV GroningenThe Netherlands

Personalised recommendations