Moment integrals of powers of airy functions

  • Bernard J. Laurenzi
Original Papers


Difference equations for moment integrals which contain powers of the Airy functionAi(z) and its derivativeAi'(z) i.e.
$$\int_0^\infty {z^n [Ai(z)]^\alpha dz,} \int_0^\infty {z^n [Ai'(z)]^\alpha dz,} $$
are obtained. These equations are easily solved for the special case of integer α. The moments occur in recent analytical attempts at solving certain nonlinear problems in Physics and Chemistry.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. R. Albright and E. P. Gavthas,Integrals involving Airy Functions, J. Phys. A: Math. Gen.20, 2663–2665 (1985).Google Scholar
  2. [2]
    J. Kelber, Ch. Schnittler and H. Ubensee,Integral Formulae for Airy Functions, Wissenschaftliche Zeitschrift der Technischen Hochschule Ilmenau31, 147–156 (1985).Google Scholar
  3. [3]
    A. Apelblat,Table of Definite and Indefinite Integrals, Elsevier, Amsterdam 1983.Google Scholar
  4. [4]
    A. I. Nikishov and V. I. Ritus,Group Theoretical Methods in Physics v. I, II, VNU Science Press, Utrecht 1986.Google Scholar
  5. [5]
    L. W. Pearson,A Scheme for Automatic Computation of Fock-type Integrals, Institute of Electrical and Electronic Engineers, Transactions on Antennas and Propagation35, 1111–1118 (1987).Google Scholar
  6. [6]
    C. M. Bender, K. A. Milton, S. S. Pinsky and L. M. Simmons,A New Perturbative Approach to Nonlinear Problems, J. Math. Phys.30, 1447–1455 (1989).Google Scholar
  7. [7]
    B. J. Laurenzi,An Analytic Solution to the Thomas-Fermi Equation, J. Math. Phys.31, 2535–2537 (1990).Google Scholar
  8. [8]
    M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions, Natl. Bur. of Standards Applied Math. Series55, Chap. 10 (1964).Google Scholar
  9. [9]
    R. E. Mickens,Difference Equations, Van Nostrand Reinhold, New York 1987.Google Scholar
  10. [10]
    ibid., ref. 8., Chap. 15.Google Scholar
  11. [11]
    ibid., ref. 8., Chap. 25.Google Scholar
  12. [12]
    ibid., ref. 8., Chap. 6.Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • Bernard J. Laurenzi
    • 1
  1. 1.Dept of ChemistryState University of New York at AlbanyAlbanyUSA

Personalised recommendations