Advertisement

Asymptotic analysis of a model for substitutional-interstitial diffusion

  • M. G. Meere
  • J. R. King
  • T. G. Rogers
Original Papers
  • 33 Downloads

Abstract

A substitutional-interstitial model for impurity diffusion in semi-conductors is discussed. In particular we consider a surface-source problem and obtain asymptotic solutions in the limit of the surface concentration of impurity being much greater than the equilibrium vacancy concentration. In the absence of vacancy generation, a double error function impurity curve is obtained. These double profiles reproduce some of the qualitative features of diffusion in many III–V semiconductor systems. We also discuss how vacancy generation modifies the analysis and show that in the limit of high vacancy generation, the problem becomes one of linear diffusion with the diffusion curves then being single error function complements.

Keywords

Mathematical Method Error Function Surface Concentration Asymptotic Solution Asymptotic Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Sturge, M. D.,A note on the theory of diffusion of copper in germanium. Proc. Phys. Soc.,73, 297–306 (1959).Google Scholar
  2. [2]
    Frank, F. C. and Turnbull, D.,Mechanisms of diffusion of copper in germanium. Phys. Rev.,104, 617–618 (1956).Google Scholar
  3. [3]
    Ghandhi, S. K.,VLSI Fabrication Principles. 1st edn. John Wiley & Sons (1983).Google Scholar
  4. [4]
    Tuck, B.,Diffusion of zinc in GaAs under conditions of vacancy non-equilibrium. Phys. Stat. Solidi, (b)45, K157-K160 (1971).Google Scholar
  5. [5]
    Tuck, B. and Kadhim, M. A. H.,Anomalous diffusion profiles of zinc in GaAs. J. Mater. Sci.,7, 585–591 (1972).Google Scholar
  6. [6]
    Zahari, M. D. and Tuck, B.,Substitutional-interstitial diffusion in semiconductors. J. Phys. D: Appl. Phys.,18, 1585–1595 (1985).Google Scholar
  7. [7]
    King, J. R., Meere, M. G. and Rogers, T. G.,Asymptotic analysis of a non-linear model for substitutional diffusion in semiconductors. Z. angew. Math. Phys.,43, 505–525 (1992).Google Scholar
  8. [8]
    Ting, C. H. and Pearson, G. L.,Time-dependence of zinc diffusion in gallium arsenide under a concentration gradient. J. Electrochem. Soc.,118, 1454–1458 (1971).Google Scholar
  9. [9]
    Meere, M. G., King, J. R. and Rogers, T. G.,Estimation of parameters in numerical modelling of nonlinear diffusion in semiconductors. Int. J. Numerical Modelling: Electronic Networks, Devices and Fields,3, 99–110 (1990).Google Scholar
  10. [10]
    Zahari, M. D. and Tuck, B.,Substitutional-interstitial diffusion with bulk vacancy generation in semiconductors. J. Phys. D: Appl. Phys.,16, 635–644 (1983).Google Scholar
  11. [11]
    Hearne, M. T., Rogers, T. G. and Tuck, B.,Exact solutions for Substitutional-interstitial diffusion in semiconductors. Semicond. Sci. Technol.,3, 456–460 (1988).Google Scholar
  12. [12]
    Gosele, U. and Morehead, F.,Diffusion of zinc in gallium arsenide: A new model. J. Appl. Phys.,52(7), 4617–4619 (1981).Google Scholar
  13. [13]
    van Ommen, A. H.,Examination of models for Zn diffusion in GaAs. J. Appl. Phys.,54(9), 5055–5058 (1983).Google Scholar
  14. [14]
    Yu, S., Tan, T. Y., and Gosele, U.,Diffusion mechanism of chromium in GaAs. J. Appl. Phys.,70(9), 4827–4836 (1991).Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • M. G. Meere
    • 1
  • J. R. King
    • 2
  • T. G. Rogers
    • 2
  1. 1.Dept of Mathematical PhysicsUniversity CollegeGalwayIreland
  2. 2.Dept of Theoretical MechanicsUniversity of NottinghamNottinghamUK

Personalised recommendations