Advertisement

Urological Research

, Volume 25, Supplement 1, pp S37–S43 | Cite as

DNA aberrations in urinary bladder cancer detected by flow cytometry and FISH

  • G. Sauter
  • T. C. Gasser
  • H. Moch
  • J. Richter
  • F. Jiang
  • R. Albrecht
  • H. Novotny
  • U. Wagner
  • L. Bubendorf
  • M. J. Mihatsch
Original Paper

Abstract

Detection of molecular alterations is of potential significance for diagnosis and prognosis in bladder cancer. Fluorescence in situ hybridization (FISH) allows visualization and quantitation of genes and chromosomes on a cell by cell level and can easily be applied to urinary cells. To evaluate the sensitivity of FISH for detection of DNA aberrations in bladder cancer, formalin-fixed tissues of 293 tumors were examined by FISH and flow cytometry (FCM). Centromere probes for the chromosomes X, Y, 1, 7, 9, and 17 were used for FISH analysis. FISH was more sensitive for detection of quantitative DNA aberrations than FCM. An aberration of at least one chromosome was found in 107 of 108 tumors (99%), which were tetraploid, aneuploid, or multiploid, and in 29 of 49 tumors (59%), which were diploid, by FCM. The frequency of FISH aberrations showed greater differences between pTa (47%) and pT1 tumors (85%;P<0.0001) than between stages pT1 and pT2-4 (98%). The marked genetic difference between pTa and pT1 tumors argues against the concept of grouping pTa and pT1 tumors together as “superficial bladder cancer.” The frequency of tumors with chromosomal aberrations detected by FISH increased with the number of chromosomes examined. Aneusomy was seen in 68% of grade 1 tumors examined for ≥4 chromosomes, suggesting that the cytological diagnosis of bladder cancer recurrences could be substantially improved by FISH.

Key words

Bladder neoplasms Flow cytometry Fluorescence in situ hybridization Chromosome Y Chromosome X Chromosome 1 Chromosome 7 Chromosome 9 Chromosome 17 Aneuploidy 

References

  1. 1.
    Blomjous EC, Schipper NW, Baak JP, Vos W, De Voogt HJ, Meijer CJ (1989) The value of morphometry and DNA flow cytometry in addition to classic prognosticators in superficial urinary bladder carcinoma. Am J Clin Pathol 91:243PubMedGoogle Scholar
  2. 2.
    Dalbagni G, Presti J, Reuter V, Zhang Z-F, Fair W, Sarkis A, Cordon-Cardo C (1993) Molecular genetic alterations of chromosome 17 and p53 nuclear overexpression in human bladder cancer. Diagn Mol Pathol 2:4PubMedGoogle Scholar
  3. 3.
    Esrig D, Spruck CHI, Nichols PW, Chaiwun B, Steven K, Groshen S, Chen SC, Skinner DG, Jones PA, Cote RJ (1993) p53 Nuclear protein accumulation correlates with mutations in the p53 gene, tumor grade, and stage in bladder cancer. Am J Pathol 143:1389PubMedGoogle Scholar
  4. 4.
    Giaretti W (1994) A model of DNA aneuploidization and evolution in colorectal cancer. Lab Invest 71:904PubMedGoogle Scholar
  5. 5.
    Gustafson H, Tribukait B (1985) Characterization of bladder carcinomas by flow DNA analysis. Eur Urol 11:410PubMedGoogle Scholar
  6. 6.
    Gustafson H, Tribukait B, Esposti P (1982) DNA profile and tumor progression in patients with superficial bladder cancer. Urol Res 10:13PubMedGoogle Scholar
  7. 7.
    Hopman A, Ramaekers F, Raap A, Beck J, Devilee P, van der Ploeg M, Vooijs G (1988) In situ hybridization as a tool to study numerical chromosome aberrations in solid bladder tumors. Histochemistry 89:307PubMedGoogle Scholar
  8. 8.
    Hopman A, Poddighe P, Smeets A, Moesker O, Beck J, Vooijs G, Ramaekers F (1989) Detection of numerical chromosome aberrations in bladder cancer by in situ hybridization. Am J Pathol 135:1105PubMedGoogle Scholar
  9. 9.
    Hopman A, Moesker O, Smeets A, Pauwels R, Vooijs G, Ramaekers F (1991) Numerical chromosome 1, 7, 9, and 11 aberrations in bladder cancer detected by in situ hybridization. Cancer Res 51:644PubMedGoogle Scholar
  10. 10.
    Kallioniemi O, Kallioniemi A, Kurisu W, Thor A, Chen L, Smith H, Waldman F, Pinkel D, Gray J (1992) C-erB-2 oncogene amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc Natl Acad Sci USA 89:5321PubMedGoogle Scholar
  11. 11.
    Kamb A, Gruis N, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian S, Stockert E, Day III R, Johnson B, Skolnick M (1994) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264:436PubMedGoogle Scholar
  12. 12.
    Koss L, Deitch D, Ramanathan R, Sherman A (1985) Diagnostic value of cytology of voided urine. Acta Cytol 29:810PubMedGoogle Scholar
  13. 13.
    Miyamoto H, Kubota Y, Shuin T, Torigoe S, Hosaka M, Iwasaki Y, Danenberg K, Danenberg PV (1993) Analyses of p53 gene mutations in primary human bladder cancer. Oncol Res 5:6Google Scholar
  14. 14.
    Mostofi F (1973) Histological typing of urinary bladder tumors. World Health Organization, GenevaGoogle Scholar
  15. 15.
    Olumi A, Tsai Y, Nichols P, Skinner D, Cain D, Bender L, Jones P (1990) Allelic loss of chromosome 17p distinguishes high grade from low grade transitional cell carcinomas of the bladder. Cancer Res 50:7081PubMedGoogle Scholar
  16. 16.
    Ruppert J, Tokino T, Sidransky D (1993) Evidence for two bladder cancer suppressor loci on human chromosome 9. Cancer Res 53:5093PubMedGoogle Scholar
  17. 17.
    Sandberg A, Berger C (1994) Review of chromosome studies in urological tumors. II. Cytogenetics and molecular genetics of bladder cancer. J Uroll 51:545Google Scholar
  18. 18.
    Sauter G, Moch H, Moore D, Carroll P, Kerschmann R, Chew K, Mihatsch M, Gudat F, Waldman F (1993) Heterogeneity oferbB-2 gene amplification in bladder cancer. Cancer Res 53:2199PubMedGoogle Scholar
  19. 19.
    Sauter G, Deng G, Moch H, Kerschmann R, Matsumura K, DeVries S, George T, Fuentes J, Carroll P, Mihatsch M, Waldman F (1994) Physical deletion of the p53 gene in bladder cancer: Detection by fluorescence in situ hybridization. Am J Pathol 144:756PubMedGoogle Scholar
  20. 20.
    Sauter G, Carroll P, Moch H, Kallioniemi A, Kurschmann R, Narayam P, Mihatsch M, Waldman F (1995) Increased c-myc gene copy number in advanced bladder cancer. Am J Pathol 146:1131PubMedGoogle Scholar
  21. 21.
    Sauter G, Moch H, Carroll P, Kurschmann R, Mihatsch M, Waldman F (1995) Chromosome 9 loss detected by fluorescence in situ hybridization. Int J Cancer 64:99PubMedGoogle Scholar
  22. 22.
    Sauter G, Moch H, Wagner U, Novotna H, Gasser T, Mattarelli G, Mihatsch M, Waldman F (1995) Y Chromosome loss detected by FISH in bladder cancer. Cancer Gen Cytogen 82:163Google Scholar
  23. 23.
    Tribukait B (1987) Flow cytometry in assessing the clinical aggressiveness of genitourinary neoplasms. World J Urol 5:108Google Scholar
  24. 24.
    Tribukait B, Gustafson H, Esposti P (1982) The significance of ploidy and proliferation in the clinical evaluation of bladder tumors. Br J Urol 54:130PubMedGoogle Scholar
  25. 25.
    UICC (1978) TNM classification of malignant tumours. International Union against Cancer, GenevaGoogle Scholar
  26. 26.
    Wheeless LL, Badalament RA, DeVere WRW, Fradet Y, Tribukait B (1993) Consensus review of the clinical utility of DNA cytometry in bladder cancer. Cytometry 14:478PubMedGoogle Scholar
  27. 27.
    Williamson MP, Elder PA, Knowles MA (1994) The spectrum of TP53 mutations in bladder carcinoma. Genes Chromosom Cancer 9:108PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • G. Sauter
    • 1
  • T. C. Gasser
    • 2
  • H. Moch
    • 1
  • J. Richter
    • 1
  • F. Jiang
    • 1
  • R. Albrecht
    • 1
  • H. Novotny
    • 1
  • U. Wagner
    • 1
  • L. Bubendorf
    • 1
  • M. J. Mihatsch
    • 1
  1. 1.Institute for PathologyUniversity of BaselBaselSwitzerland
  2. 2.Urologic ClinicUniversity of BaselBaselSwitzerland

Personalised recommendations