Urological Research

, Volume 25, Issue 1, pp 59–65

Morphological analysis of renal cell culture models of calcium phosphate stone formation

  • Y. Naito
  • Y. Ohtawara
  • S. Kageyama
  • M. Nakano
  • A. Ichiyama
  • M. Fujita
  • K. Suzuki
  • K. Kawabe
  • I. Kino
Original Papers


Cell culture models of calcium phosphate renal stone formation were established using the MDCK cell line. Renal microliths were detected within pseudocysts in three-dimensional soft agar cultures, and were also observed in the basal region of cells lining the cell sheet, and immediately beneath domes or blisters in monolayers and collagen gel cultures. Light and scanning electron microscopy indicated that these microliths had a similar lamellated and spherical appearance to those in humans. These microliths were first detected microscopically after 21 days of culture, and were found to be composed of calcium phosphate by X-ray and microinfrared spectroscopic analyses. These culture models may provide a powerful new tool to study the pathogenesis of renal stone diseases and/or calcium phosphate stone formation in humans and animals.

Key words

Renal stone Cell culture models MDCK cell line Calcium phosphate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson CK (1979) The anatomical aetiology of renal lithiasis. In:Wickham J EA (ed) Urinary calculus disease. Churchill Livingstone, London, 40Google Scholar
  2. 2.
    Aso Y, Ohtawara Y, Fukuta K, Sudoko H, Nakano M, Ushiyama T, Ohta N, Suzuki K, Tajima A (1987) Operative fiberoptic nephroureteroscopy: Removal of upper ureteral and renal calculi. J Urol 137:629Google Scholar
  3. 3.
    Atmani F, Opalko FJ, Khan SR (1996) Association of urinary macromolecules with calcium oxalate crystals induced in vitro in normal human and rat urine. Urol Res 24:45Google Scholar
  4. 4.
    Barckhaus RH, Hohling HJ, Fromm I, Hirsch P, Reimer L (1991) Electron spectroscopic diffraction and imaging of the early and mature stages of calcium phosphate formation in the epiphyseal growth plate. J Microsc 162:155Google Scholar
  5. 5.
    Breuer WV, Mack E Rothstein A (1988) Activation of K+ and Cl−1 channels by Ca2+ and cyclic AMP in dissociated kidney epithelial (MDCK) cells. Pflügers Arch 411:450Google Scholar
  6. 6.
    Coe FL, Parks JH (1988) Nephrolithiasis: Pathogenesis and treatment (2nd edn). Year Book Medical Publishers, Chicago, plGoogle Scholar
  7. 7.
    Coe FL, Nakagawa Y, Asplin J, Parks JH (1994) Role of nephrocalcin in inhibition of calcium oxalate crystallization and nephrolithiasis. Miner Electrolyte Metab 20:378Google Scholar
  8. 8.
    Curhan GC, Curhan SG (1994) Dietary factors and kidney stone formation. Compr Ther 20:485Google Scholar
  9. 9.
    De Bruijn WC, Boeve ER, van Run PR, van Miert PP, de Water R, Romiji JC, Verkoelen CF, Cao LC, Schroder FH (1995) Etiology of calcium oxalate nephrolithiasis in rat. I. Can this be a model for human stone formation? Scanning Microsc 9:103Google Scholar
  10. 10.
    De Bruijn WC, Boeve ER, van Run PR. van Miert PP, de Water R, Romijn JC, Verkoelen CF, Cao LC, van 't Noordende JM, and Schrder FH (1995) Etiology of calcium oxalate nephrolithiasis in rats. II. The role of the papilla in stone formation. Scanning Microsc 9:115Google Scholar
  11. 11.
    De Vita MV, Zabetakis PM (1993) Laboratory investigation of renal stone disease. Clin Lab Med 13:225Google Scholar
  12. 12.
    Gaush CR, Hard WL, Smith TF (1966) Characterization of an established line of canine kidney cells (MDCK). Proc Soc Exp Biol Med 122:931Google Scholar
  13. 13.
    Goldfarb S (1994) Diet and nephrolithiasis. Annu Rev Med 45:235Google Scholar
  14. 14.
    Grases F, Sohnel O (1993) Mechanism of oxalocalcic renal calculi generation. Int Urol Nephrol 25:209Google Scholar
  15. 15.
    Grover PK, Ryall RL, Marshall VR (1992) Calcium oxalate crystallization in urine: role of mate and glycosaminoglycans. Kidney Int 41:149Google Scholar
  16. 16.
    Herzlinger DA, Eeston TG, Ojakian GK (1982) The MDCK epithelial cell line expresses a cell surface antigen of the kidney distal tubule. J Cell Biol 93:269Google Scholar
  17. 17.
    Hess B (1994) Tamm-Horsfall glycoprotein and calcium nephrolithiasis. Miner Electrolyte Metab 20:393Google Scholar
  18. 18.
    Hill GS (1992) Calcium and the kidney, nephrolithiasis, and hydronephrosis. In: Heptinstall RH (ed) Pathology of the kidney (4th edn). Little Brown, Boston, p 1563Google Scholar
  19. 19.
    Joos RW, Carr CW (1967) The binding of calcium in mixtures of phospholipids. Proc Soc Exp Biol Med 124:1268Google Scholar
  20. 20.
    Kennedy SM, Flanagan JL, Mills JW, Friedman PA (1989) Stimulation by parathyroid hormone of calcium absorption in confluent Marin-Darby canine kidney cells. J Cell Physiol 139:83Google Scholar
  21. 21.
    Khan SR (1995) Calcium oxalate crystal interaction with renal tubular epithelium, mechanism of crystal adhesion and its impact on stone development. Urol Res 23:71Google Scholar
  22. 22.
    Khan SR (1995) Experimental calcium oxalate nephrolithiasis and the formation of human urinary stones. Scanning Microsc 9:89Google Scholar
  23. 23.
    Lieske JC, Swift H, Martin T, Patterson B, Toback FG (1994) Renal epithelial cells rapidly bind and internalize calcium oxalate monohydrate crystals. Proc Natl Acad Sci USA 91:6987Google Scholar
  24. 24.
    Mandel N (1994) Crystal-membrane interaction in kidney stone disease. J Am Soc Nephrol 5 (Suppl 1):S37Google Scholar
  25. 25.
    Mandel N, Riese R (1991) Crystal-cell interactions: crystal binding to rat renal papillary tip collecting duct cells in culture. Am J Kidney Dis 17:402Google Scholar
  26. 26.
    Menon M (1993) A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. J Urol 150:563Google Scholar
  27. 27.
    Pak CY (1994) Citrate and renal calculi: an update. Miner Electrolyte Metab 20:371Google Scholar
  28. 28.
    Peacock M, Robertson WG (1979) The biochemical aetiology of renal lithiasis. In:Wickham JEA (ed) Urinary calculus disease. Churchill Livingstone, London, p 69Google Scholar
  29. 29.
    Prien EL (1975) The riddle of Randall's plaques. J Urol 114:500Google Scholar
  30. 30.
    Randall A (1936) A hypothesis for the origin of renal calculus. N Engl J Med 214:234Google Scholar
  31. 31.
    Randall A (1937) The origin and growth of renal calculi. Ann Surg 105:1009Google Scholar
  32. 32.
    Randall A (1940) Papillary pathology as a precursor of primary renal calculus. J Urol 44:580Google Scholar
  33. 33.
    Riese RJ, Riese JW, Klineman JG, Wiessner JH, Mandel GS, Mandel NS (1988) Specificity in calcium oxalate adherence to papillary epithelial cells in culture. Am J Physiol 255:F1025Google Scholar
  34. 34.
    Robertson WG, Peacock M (1972) Calcium oxalate crystalluria and inhibitors of crystallization in recurrent renal stone-formers. Clin Sci 43:499Google Scholar
  35. 35.
    Robertson WG, Peacock M, Nordin BEC (1971) Calcium oxalate crystalluria and urine saturation in recurrent renal stoneformers. Clin Sci 40:365Google Scholar
  36. 36.
    Rosen S, Greenfeld Z, Bernheim J, Rathaus M, Podjarny E, Brezis M (1990) Hypercalcemic nephropathy: Chronic disease with predominant medullary inner stripe injury. Kidney Int 37:1067Google Scholar
  37. 37.
    Ryall RL (1993) The scientific basis of calcium oxalate urolithiasis. Predilection and precipitation, promotion and prescription. World J Urol 11:59Google Scholar
  38. 38.
    Scheinman SJ, Pook MA. Wooding C, Pang JT, Frymoyer PA, Thakker RV (1993) Mapping the gene causing X-linked recessive nephrolithiasis to Xp 11.22 by linkage studies. J Clin Invest 91:2351Google Scholar
  39. 39.
    Suzuki H, Naito Y (1991) An in vitro study on the characteristics of osteoblastic cells derived from human mandibular periosteum (in Japanese). J Jpn Stomatol Soc 40:89Google Scholar
  40. 40.
    Termine JD, Klineman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR (1981) Osteonectin, a bone specific protein linking mineral to collagen. Cell 26:99Google Scholar
  41. 41.
    Torres VE, Wilson DM, Hattery RR, Segura JW (1993) Renal stone disease in autosomal dominant polycystic kidney disease. Am J Kidney Dis 22:513Google Scholar
  42. 42.
    Van Aswegen CH, Dirksen van Sckalckwyk JC, du Toit PJ (1992) The effect of calcium and magnesium ions on urinary urokinase and silicase activity. Urol Res 20:41Google Scholar
  43. 43.
    Verdier JM, Dussol B, Casanova P, Daudon M, Dupuy P, Berthezene P, Boistelle R, Berland Y, Dagorn JC (1993) Renal lithostathine: a new protein inhibitor of lithogenesis. Nephrologie 14:261Google Scholar
  44. 44.
    Wandzilak TR, Calo L, D'Amdre S, Borsatti A, Williams HE (1992) Oxalate transport in cultured porcine renal epithelial cells. Urol Res 20:341Google Scholar
  45. 45.
    Wang YH, Grenabo L, Hedelin H, McLean RJ, Nickel JC, Pettersson S (1993) Citrate and urease-induced crystallization in synthetic and human urine. Urol Res 21:109Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Y. Naito
    • 1
  • Y. Ohtawara
    • 2
  • S. Kageyama
    • 2
  • M. Nakano
    • 2
  • A. Ichiyama
    • 3
  • M. Fujita
    • 4
  • K. Suzuki
    • 2
  • K. Kawabe
    • 5
  • I. Kino
    • 1
  1. 1.First Department of PathologyHamamatsu University School of MedicineHamamatsuJapan
  2. 2.Department of UrologyHamamatsu University School of MedicineShizuokaJapan
  3. 3.First Department of BiochemistryHamamatsu University School of MedicineShizuokaJapan
  4. 4.Second Department of BiochemistryHamamatsu University School of MedicineShizuokaJapan
  5. 5.Department Urology, Faculty of MedicineUniversity of TokyoTokyoJapan

Personalised recommendations