Space life sciences

, Volume 2, Issue 4, pp 472–497 | Cite as

Review of organic matter in the Orgueil meteorite

  • Bruce L. Baker


The Orgueil meteorite is a carbonaceous chondrite containing about 3.1% carbon, 5.5% sulfur and 19.9% water. Virtually all of the carbon is present as organic carbon although only about 20% is soluble in common organic solvents; the remainder is in the form of a highly substituted, irregular and aromatic polymer. Detailed methods of analysis have been improved in the past ten years sufficient for the detection of individual compounds in most of the following classes of organic compounds: hydrocarbons, oxygen-, sulfur- and nitrogen-containing organic compounds, optically active species, isotopes, bacteria and organized elements. Ten series of homologous compounds have been observed in the aliphatic hydrocarbons.

In the 1950's, when interest was renewed in the Orgueil meteorite, the analytical capabilities may have given a bias toward biogenic agencies for the formation of the organic matter found in the meteorites. Some of the key biochemical compounds for extraterrestrial life are present. There is doubt, however, that these particular compounds are truly indigenous. The possibility that the indigenous organic compounds in the meteorite are present as a result of abiogenic syntheses in the cosmos is becoming more generally accepted.


Organic Matter Hydrocarbon Geochemistry Organic Compound Active Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anders, E.: 1961, ‘The Moon as a Collector of Biological Material’,Science 133, 1115–1116.Google Scholar
  2. Anders, E.: 1962a, ‘Meterorite Ages’,Rev. Mod. Phys. 34, No. 2, 287–325.Google Scholar
  3. Anders, E.: 1962b, ‘Meteoritic Hydrocarbons and Extraterrestrial Life’,Ann. N.Y. Acad. Sci. 93, 651–657, 661–662.Google Scholar
  4. Anders, E.: 1962c, ‘Two Meteorites of Unusually Short Cosmic-ray Exposure Age’,Science 138, 431–433.Google Scholar
  5. Anders, E.: 1963, ‘On the Origin of Carbonaceous Chondrites’,Ann. N.Y. Acad. Sci. 108, 514–533.Google Scholar
  6. Anders, E.: 1964, ‘Origin, Age, and Composition of Meteorites’,Space Sci. Rev. 3, 583–714.Google Scholar
  7. Anders, E.: 1965, ‘Chemical Fractionations in Meteorites’,Meteoritika 26, 17–25.Google Scholar
  8. Anders, E.: 1968, ‘Chemical Processes in the Early Solar System, as Inferred from Meteorites’,Accounts Chem. Res., October, 289–298.Google Scholar
  9. Anders, E. and Arnold, J. R.: 1965, ‘Age of Craters on Mars’,Science 149, 1494–1496.Google Scholar
  10. Anders, E. and Fitch, F. W.: 1962, ‘Search for Organized Elements in Carbonaceous Chondrites’,Science 138, 1392–1399.Google Scholar
  11. Anders, E. and Goles, G. G.: 1961, ‘Theories on the Origin of Meteorites’,J. Chem. Educ. 38, 58.Google Scholar
  12. Anders, E., Heymann, D., and Mazor, E.: 1970, ‘Isotopic Composition of Primordial Helium in Carbonaceous Chondrites’,Geochim. Cosmochim. Acta 34, 127–131.Google Scholar
  13. Anders, E., DuFresne, E. R., Hayatsu, R., DuFresne, A., Cavaille, A., and Fitch, F. W.: 1964, ‘Contaminated Meteorite’,Science 146, 1157–1161.Google Scholar
  14. Arpigny, C.: 1965, ‘Spectra of Comets and their Interpretation’,Ann. Rev. Astron. Astrophys. 3 (ed. by L.Goldberg), 351–375.Google Scholar
  15. Ault, W. V. and Kulp, J. L.: 1959, ‘Isotopic Geochemistry of Sulfur’,Geochim. Cosmochim. Acta 16, 201–235.Google Scholar
  16. Baker, B. L. and Hodgson, G. W.: 1965, ‘Improved Porphyrin Analysis for Carbonaceous Meteorites’,Science 150, 369.Google Scholar
  17. Barghoorn, E. S. and Schopf, J. W.: 1966, ‘Microorganisms Three Billion Years Old from the Precambrian of South Africa’,Science 152, 758–763.Google Scholar
  18. Belsky, T. and Kaplan, I. R.: 1970, ‘Light Hydrocarbon Gases, C13, and Origin of Organic Matter in Carbonaceous Chondrites’,Geochim. Cosmochim. Acta 34, 257–278.Google Scholar
  19. Bernal, J. D.: 1961, ‘Significance of Carbonaceous Meteorites in Theories on the Origin of Life’,Nature 190, 129–131.Google Scholar
  20. Bernal, J. D.: 1962, ‘Comments on Organic Microstructures in the Mokoia Meteorite’,Nature 193, 1127–1129.Google Scholar
  21. Berthelot, M.: 1868, ‘On Carbonaceous Matter in Meteorites’,Compt. Rend. Acad. Sci. Paris 67, 849.Google Scholar
  22. Berthelot, P.: 1869, ‘Carbonaceous Matter of the Orgueil Meteorite Purified as much as possible by Solvents Following Complete Oxidation’,J. Prakt. Chim. 106, 254.Google Scholar
  23. Berzelius, J.: 1834, ‘The Alais Meteorite’,Ann. Phys. Chem. 33, 113–148.Google Scholar
  24. Bitz, Sister M. C. and Nagy, B.: 1966, ‘Ozonolysis of “Polymer-type” Material in Coal, Kerogen, and in the Orgueil Meteorite: A Preliminary Report’,Proc. Natl. Acad. Sci. U.S. 56, 1383–1390.Google Scholar
  25. Boato, G.: 1954, ‘The Isotopic Composition of Hydrogen and Carbon in the Carbonaceous Chondrites’,Geochim. Cosmochim. Acta 6, 209–220.Google Scholar
  26. Bostrom, K. and Fredriksson, K.: 1966, ‘Surface Conditions of the Orguiel Meteorite Parent Body as Indicated by Mineral Associations’,Smithsonian Misc. Collections 151, No. 3, 1–39.Google Scholar
  27. Briggs, M. H.: 1961, ‘Organic Constitutents of Meteorites’,Nature 191, 1137–1140.Google Scholar
  28. Briggs, M. H.: 1962, ‘Properties of the Organic Microstructures of Some Carbonaceous Chondrites’,Nature 195, 1076–1077.Google Scholar
  29. Briggs, M. H.: 1963a, ‘Evidence of an Extraterrestrial Origin for Some Organic Constitutents of Meteorites’,Nature 197, 1290.Google Scholar
  30. Briggs, M. H.: 1963b, ‘Organic Extracts of Some Carbonaceous Meteorites’,Life Sci. No. 1, 63–68.Google Scholar
  31. Briggs, M. H. and Kitto, G. B.: 1962, ‘Complex Organic Microstructures in the Mokoia Meteorite’,Nature 193, 1126–27.Google Scholar
  32. Briggs, M. H. and Mamikunian, G.: 1962–1963, ‘Organic Constitutents of the Carbonaceous Chondrites’,Space Sci. Rev. 1, 647–682.Google Scholar
  33. Brooks, J. and Shaw, G.: 1968a, ‘Chemical Structure of the Exine of Pollen Walls and a New Function for Carotenoids in Nature’,Nature 219, 532–533.Google Scholar
  34. Brooks, J. and Shaw, G.: 1968b, ‘Identity of Sporopollenin with Older Kerogen and New Evidence for the Possible Biological Source of Chemicals in Sedimentary Rocks’,Nature 220, 678–679.Google Scholar
  35. Brooks, J. and Shaw, G.: 1969, ‘Evidence for Extraterrestrial Life: Identity of Sporopollenin with the Insoluble Organic Matter Present in the Orgueil and Murray Meteorites and also in Some Terrestrial Microfossils’,Nature 223, 754–756.Google Scholar
  36. Buhl, D. and Snyder, L. E.: 1970, ‘Hydrogen Cyanide Can Be Added to the List of Molecules Discovered in Interstellar Space’,Chem. Eng. News 48, (26), 57.Google Scholar
  37. Burlingame, A. L. and Schnoes, H. K.: 1966, ‘Organic Matter in Carbonaceous Chondrites’,Science 152, 104–106.Google Scholar
  38. Burlingame, A. L. and Simoneit, B. R.: 1968, ‘Isoprenoid Fatty Acids Isolated from the Kerogen Matrix of the Green River Formation (Eocene)’,Science 160, 531–533.Google Scholar
  39. Calvin, M.: 1961, ‘The Chemistry of Life: 3. How Life Originated on Earth and in the World Beyond’,Chem. Eng. News 39, (21), 96–104.Google Scholar
  40. Calvin, M. and Vaughn, S. K.: 1960, ‘Extraterrestrial Life: Some Organic Constituents of Meteorites and Their Significance for Possible Extraterrestrial Biological Evolution’,Space Res. 1, 1171–1191.Google Scholar
  41. Carver, E. A. and Anders, E.: 1970, ‘Serra de Mage: A Meteorite with an Unusual History’,Earth Planet. Sci. Lett. 8, 214–220.Google Scholar
  42. Claus, G. and Nagy, B.: 1961, ‘A Microbiological Examination of Some Carbonaceous Chondrites’,Nature 192, 594–596.Google Scholar
  43. Claus, G. and Suba-C., E. A.: 1964, ‘Organized Element Distribution in Relation to Size in the Orgueil Meteorite’,Nature 204, 118–120.Google Scholar
  44. Claus, G., Nagy, B., and Europa, D. L.: 1963, ‘Further Observations on the Properties of the “Organized Elements’ in Carbonaceous Chondrites’,Ann. N.Y. Acad. Sci. 108, 580–605.Google Scholar
  45. Clayton, R. N.: 1963, ‘Carbon Isotope Abundance in meteoritic Carbonates’,Science 140, 192–193.Google Scholar
  46. Cloez, M. S.: 1864a, ‘Note on the Chemical Composition of the Orgueil Meteorite’,Compt. Rend. Acad. Sci. Paris 58, 986–988.Google Scholar
  47. Cloez, M. S.: 1864b, ‘Chemical Analysis of the Orgueil Meteorite’,Compt. Rend. Acad. Sci. Paris 59, 37–40.Google Scholar
  48. Cloez, M. S.: 1864c, ‘Amount of Carboxylic Acids Contained in the Orgueil Meteorite’,Compt. Rend. Acad. Sci. Paris 59, 830–831.Google Scholar
  49. Commins, B. T. and Harington, J. S.: 1966, ‘Polycyclic Aromatic Hydrocarbons in Carbonaceous Meteorites’,Nature 212, 273–274.Google Scholar
  50. Daubrée, M.: 1864, ‘Note on the Meteorite which Fell on May 14 Near Orgueil (Tarn-et-Garonne)’,Compt. Rend. Acad. Sci. Paris 58, 984–986.Google Scholar
  51. Daubrée, M.: 1864, ‘New Information on the Bolide of May 14, 1864’,Compt. Rend. Acad. Sci. Paris 58, 1065–1072.Google Scholar
  52. Daubrée, M.: 1864, ‘The Presence of Breunnerite in the Orgueil Meteorite’,Compt. Rend. Acad. Sci. Paris 59, 830.Google Scholar
  53. Daubrée, M.: 1866, ‘Expériences synthétiqué relatives aux météorites. Rapprochements auxquels ces expériences conduisent, tant pour la formation des corps planétaires que pour celle du globe terrestre, Part 1’,Compt. Rend. Acad. Sci. Paris 62, 200–206.Google Scholar
  54. Daubrée, M.: 1866, ‘Expériences synthétiques relatives aux météorites. Rapprochements auxquels ces expériences conduisent, tant pour la formation des corps planétaires que pour celle du globe terrestre, Part 2’,Compt. Rend. Acad. Sci. Paris 62, 369–375.Google Scholar
  55. Daubrée, M.: 1866, ‘Expériences synthétiques relatives aux météorites. Rapprochements auxquels ces expériences conduisent, tant pour la formation des corps planétaires que pour celle du globe terrestre, Part 3’,Compt. Rend. Acad. Sci. Paris 62, 660–674.Google Scholar
  56. Daubrée, M.: 1866, ‘A Presentation to the Academy of a Meteorite on Behalf of M. de Marechal Vaillant’,Compt. Rend. Acad. Sci. Paris 62, 283–284.Google Scholar
  57. Deflandre, M. Georges: 1962, ‘Critical Remarks on the Alleged Presence of Microorganisms of Extraterrestrial Origin in Meteorites’,Compt. Rend. Acad. Sci. Paris 254, 3405–3407.Google Scholar
  58. Des Cloiseaux, M.: 1864, ‘The Presence of Magnesium Carbonate and Iron Crystals in the Orgueil Meteorite’,Compt. Rend. Acad. Sci. Paris 59, 829–830.Google Scholar
  59. Dodd, R. T., Van Schmus, W. R., and Koffman, D. M.: 1967, ‘A Survey of the Unequilibrated Ordinary Chondrites’,Geochim. Cosmochim. Acta 31, 921–951.Google Scholar
  60. Donn, B., Wickramasinghe, N. C., Hudson, J. P., and Stecher, T. P.: 1968, ‘On the Formation of Graphite Grains in Cool Stars’,Astrophys. J. 153, 451–464.Google Scholar
  61. Duchesne, J.: 1965, ‘Molecular Evolution and the Origin of Life’,Ciel Terre 81, 1–7.Google Scholar
  62. Duchesne, J.: 1967, ‘Carbonaceous Meteorites and the Extraterrestrial Life’,Radiobiol. Biol. Mol. No. 1, 33–42.Google Scholar
  63. Duchesne, J.: 1967, ‘Chemical Evolution and the Origin of Life’,Bull. Acad. Roy. Belg. 48, 1427–1451.Google Scholar
  64. Duchesne, J.: 1969, ‘Meteorites and Extraterrestrial Life’,Sci. J. 5, (4), 33–38.Google Scholar
  65. Duchesne, J. and Depireux, J.: 1958, ‘Ferromagnetism of Meteorites’,Nature 182, 931.Google Scholar
  66. Duchesne, J., Depireux, J., and Litt, C.: 1964, ‘The Nature of Free Radicals in the Cold Bokkeveld Meteorite’,Compt. Rend. Acad. Sci. Paris 259, 1891–1893.Google Scholar
  67. Duchesne, J., Depireux, J., and Litt, M. C.: 1964, ‘Organic Free Radicals in Mighei and Nogoya Meteorites’,Compt. Rend. Acad. Sci. Paris 259, 2776–2778.Google Scholar
  68. Duchesne, J., Cornill, P., Read, M., and Deltour-Litt, C.: 1965, ‘A Comparative Study of Saturated Lives of e.p.r. Signal in the Mighei Meteorite and of Carbon’,Compt. Rend. Acad. Sci. Paris 260, 2879–2881.Google Scholar
  69. DuFresne, E. R. and Anders, E.: 1961, ‘The Record in the Meteorites — V’,Geochim. Cosmochim. Acta 23, 200–208.Google Scholar
  70. DuFresne, E. R. and Anders, E.: 1962, ‘On the Chemical Evolution of the Carbonaceous Chondrites’,Geochim. Cosmochim. Acta 26, 1085–1114.Google Scholar
  71. Eck, R. V., Lippincott, E. R., Dayhoff, M. O., and Pratt, Y. T.: 1966, ‘Thermodynamic Equilibrium in the Origin of Organic Matter’,Sci. Tech. Aerospace Rept. 4, 3010.Google Scholar
  72. Eglinton, G.: 1969, ‘Organic Geochemistry. The Organic Chemists' Approach’, inOrganic Geochemistry (ed. by G. Eglinton and M. T. J. Murphy), Springer-Verlag, pp. 20–73.Google Scholar
  73. Evans, E. D., Kenny, G. S., Meinschein, W. G., and Bray, E. E.: 1957, ‘Distribution ofn-paraffins and Separation of Saturated Hydrocarbons from Recent Marine Sediments’,Anal. Chem. 29, 1858–1916.Google Scholar
  74. Feulgen, R. and Rossenbeck, H.: 1924a, ‘Microchemical Test for Nucleic Acid of the Thymonucleic Acid Type and the Selective Staining of Cell Nuclei in Microscopic Preparations’,Z. Physiol. Chem. 135, 203–248.Google Scholar
  75. Feulgen, R. and Voit, K.: 1924b, ‘The Mechanism of Nucleal Staining'. I. Demonstration of the Reducing Groups in the Nuclei of Partially Hydrolyzed Microscopic Preparations’,Z. Physiol. Chem. 135, 249–252.Google Scholar
  76. Fish, R. A., Goles, G. G., and Anders, E.: 1960, ‘The Record in the Meteorites'. III. On the Development of Meteorites in Asteroidal Bodies’,Astrophys. J. 132, 243–258.Google Scholar
  77. Fitch, F. W. and Anders, E.: 1963a, ‘Observations of the Nature of the “Organized Elements” in Carbonaceous Chondrites’,Ann. N.Y. Acad. Sci. 108, 495–513.Google Scholar
  78. Fitch, F. W. and Anders, E.: 1963b, ‘Organized Elements: Possible Identification in Orgueil Meteorite’,Science 140, 1097–1100.Google Scholar
  79. Fitch, F. W. and Anders, E.: 1966, ‘The Nature of the Organized Elements in Carbonaceous Chondrites’,Natl. Acad. Sci. — Natl. Res. Council, Publ. 1296A, 29–47.Google Scholar
  80. Fitch, F. W., Schwarcz, H. P., and Anders, E.: 1962, ‘“Organized Elements’ in Carbonaceous Chondrites’,Nature 193, 1123–1125.Google Scholar
  81. Florovskaya, V. N., Vdovykin, F. P., Teplitskaya, T. A., and Zenin, R. B.: 1965, ‘Comparative Characteristics of Polycyclic Aromatic Hydrocarbons in Carbonaceous Chondrites, Rocks and Minerals of Endogenic Origin’,Meteoritika 26, 169–176.Google Scholar
  82. Forsman, J. P.: 1963, ‘Geochemistry of Kerogen’,Intern. Ser. Monographs Earth Sci. 16, (ed. by I. A. Breger, Pergamon), pp. 148–182.Google Scholar
  83. Fox, S. W.: 1961, Paper presented to the AAAS meeting on Extraterrestrial Biochemistry and Biology, Denver, Colo, December 27.Google Scholar
  84. Fox, S. W.: 1964, ‘Experiments in Molecular Evolution and Criteria of Extraterrestrial Life’,Bio-Science 14, (12), 13–21.Google Scholar
  85. Fox, S. W. and Harada, K.: 1961, ‘Synthesis of Uracil Under Conditions of a Thermal Model of Prebiological Chemistry’,Science 133, 1923–1924.Google Scholar
  86. Fredriksson, K. and Keil, K.: 1964, ‘The Iron, Magnesium, Calcium and Nickel Distribution in the Murray Carbonaceous Chondrite’,Meteoritics 2, 201–217.Google Scholar
  87. Gelpi, E., Nooner, D. W., and Oro, J.: 1970, ‘The Ubiquity of Hydrocarbons in Nature: Aliphatic Hydrocarbons in Dust Samples’,Geochim. Cosmochim. Acta 34, 421–425.Google Scholar
  88. Gerard, A. and Delmelle, M.: 1964, ‘Mossbauer Effect and Ionic Character of Iron Atoms in Orgueil and Cold Bokkeveld Meteorites’,Compt. Rend. Acad. Sci. Paris 259, 1756–1759.Google Scholar
  89. Gregory, P. H.: 1962, ‘Identity of Organized Elements from Meteorites’,Nature 194, 1065.Google Scholar
  90. Hamilton P. B.: 1965, ‘Amino Acids on Hands’,Nature 205, 284–285.Google Scholar
  91. Harada, K.: 1969, ‘Origin of Organic Substances in Meteorites’,Tampakushitsu Kakusan Koso 14 (3), 1197–1201.Google Scholar
  92. Hayatsu, R.: 1964, ‘Orgueil Meteorite: Organic Nitrogen Contents’,Science 146, 1291–1293.Google Scholar
  93. Hayatsu, R.: 1965, ‘Optical Activity in the Orgueil Meteorite’,Science 149, 443–447.Google Scholar
  94. Hayatsu, R.: 1966, ‘Artifacts in Polarimetry and Optical Activity in Meteorites’,Science 153, 859–861.Google Scholar
  95. Hayatsu, R., Studier, M. H., Oda, A., Fuse, K., and Anders, E.: 1968, ‘Origin of Organic Matter in Early Solar System: II. Nitrogen Compounds’,Geochim. Cocmochim. Acta 32, 175–190.Google Scholar
  96. Hayes, J. M.: 1967, ‘Organic Constituents of Meteorites — A Review’,Geochim. Cosmochim. Acta 31, 1395–1440.Google Scholar
  97. Hayes, J. M. and Biemann, K.: 1968, ‘High Resolution Mass Spectrographic Investigations of the Organic Constituents of the Murray and Holbrook Chondrites’,Geochim. Cosmochim. Acta 32, 239–267.Google Scholar
  98. Herzberg, G.: 1950, ‘Spectra of Diatomic Molecules’, Van Nostrand Reinhold Co., New York, 658 pp.Google Scholar
  99. Heslop-Harrison, J.: 1968, ‘Pollen Wall Development’,Science 161, 230–237.Google Scholar
  100. Heymann, D. and Mazor, E.: 1967, ‘Radiation Ages and Gas Retention Ages of Carbonaceous Chondrites and Unequilibrated Ordinary Chondrites, Radioactive Dating Methods Low-Level Counting’,Proc. Symp., Monaco, 239-57.Google Scholar
  101. Himes, S. V.: 1960, ‘Further Investigation of Organic Matter in Meteorite Murray’, Univ. of California Radiation Lab. Report, U.C.R.L. 9208, 12–27.Google Scholar
  102. Hodgson, G. W. and Baker, B. L.: 1964, ‘Evidence for Porphyrins in the Orgueil Meteorite’,Nature 202, 125–131.Google Scholar
  103. Hodgson, G. W. and Baker, B. L.: 1967, ‘Porphyrin Abiogenesis from Pyrrole and Formaldehyde Under Simulated Geochemical Conditions’,Nature 216, 29–32.Google Scholar
  104. Hodgson, G. W. and Baker, B. L.: 1969, ‘Porphyrins in Meteorites: Metal Complexes in Orgueil, Murray, Cold Bokkeveld and Mokoia Meterorites’,Geochim. Cosmochim. Acta 33, 943–958.Google Scholar
  105. Hodgson, G. W. and Hitchon, B.: 1959, ‘Primary Degradation of Chlorophyll Under Simulated Petroleum Source Rock Sedimentation Conditions’,Bull. Am. Assoc. Petrol. Geologists 43, 2481–2492.Google Scholar
  106. Hodgson, G. W. and Ponnamperuma, C.: 1968, ‘Prebiotic Porphyrin Genesis Porphyrins from Electric Discharge in Methane, Ammonia and Water Vapor’,Proc. Natl. Acad. Sci. U.S. 59, 22–28.Google Scholar
  107. Hodgson, G. W., Hitchon, B., Elofson, R. M., Baker, B. L., and Peake, E.: 1960, ‘Petroleum Pigments from Recent Fresh-water Sediments’,Geochim. Cosmochim. Acta 19, 272–288.Google Scholar
  108. Jedwab, J.: 1967, ‘Magnetites in Platelets of the Carbonaceous Meteorites Alais, Ivuna and Orgueil’,Earth Planet. Sci. Lett. 2 (5), 440–444.Google Scholar
  109. Johnson, F. M.: 1965, ‘Diffuse Interstellar Lines and Chemical Characterizations of Interstellar Dust’, in Interstellar Grains, Proc. Conf. Rensselaer Polytechnic Inst., Troy, N.Y. Aug. 24–26, 229–240.Google Scholar
  110. Kaplan, I. R. and Hulston, J. R.: 1966, ‘The Isotopic Abundance and Content of Sulfur in Meteorites’,Geochim. Cosmochim. Acta 30, 479–496.Google Scholar
  111. Kaplan, I. R., Degens, E. T., and Reuter, J. H.: 1963, ‘Organic Compounds in Stony Meteorites’,Geochim. Cosmochim. Acta 27, 805–834.Google Scholar
  112. Kerridge, J. F.: 1964, ‘Low-Temperature Minerals from the Fine-grained Matrix of some Carbonaceous Meteorites’,Ann. N.Y. Acad. Sci. 119, 41–53.Google Scholar
  113. Kerridge, J. F.: 1967, ‘Mineralogy and Genesis of the Carbonaceous Meteorites’,Mantles Earth Terr. Planets, NATO Advan. Study Inst. 1966, 35–47.Google Scholar
  114. Kesselmeyer, P. A.: 1864, ‘The Meteorite Fall at Orgueil and Nohic near Montauban in Southern France on May 14, 1864’,Poggendorff. Ann. Phys. Chem. 122, 654.Google Scholar
  115. Krejci-Graf, K.: 1962, ‘Organic Substances in Meteorites’,Umschau 8, 249–250.Google Scholar
  116. Krejci-Graf, K.: 1963a, ‘Organic Geochemistry’,Naturw. Rundschau 16, 175–186.Google Scholar
  117. Krejci-Graf, K.: 1963b, ‘Supposedly Biogenic Materials in Meteorites’,Naturwiss. 16, 539–541.Google Scholar
  118. Krouse, H. R. and Modzeleski, V. E.: 1970, ‘C13/C12 Abundances in Components of Carbonaceous Chondrites and Terrestrial Samples’,Geochim. Cosmochim. Acta 34, 459–474.Google Scholar
  119. Krummenacher, D., Merrihue, C. M., Pepin, R. O., and Reynolds, J. H.: 1962, ‘Meteoritic Krypton and Barium Versus the General Isotopic Anomalies in Meteoritic Xenon’,Geochim. Cosmochim. Acta 26, 231–249.Google Scholar
  120. Larimer, J. W. and Anders, E.: 1967, ‘Chemical Fractionation in Meteorites: II. Abundance Patterns and Their Interpretation’,Geochim. Cosmochim. Acta 31, 1239–1270.Google Scholar
  121. Larimer, J. W. and Anders, E.: 1970, ‘Chemical Fractionations in Meteorites: III. Major Element Fractionations in Chondrites’,Geochim. Cosmochim. Acta 34, 367–387.Google Scholar
  122. Lewis, J. S.: 1967, ‘A Possible Origin for Sulfates and Sulfur in Meteorites’,Earth Planet. Sci. Lett. 2, 29–32.Google Scholar
  123. Lipschutz, M. E., Signer, P., and Anders, E.: 1965, ‘Cosmic Ray Exposure Ages of Iron Meteorites by the Ne21/Al26 Method’,J. Geophys. Res. 70, 1473–1489.Google Scholar
  124. Mamikunian, G. and Briggs, M. H.: 1963, ‘Some Microstructures of Complex Morphology Observed in Preparations of Carbonaceous Chondrites Made Under Sterile Conditions’,Nature 197, 1245–1248.Google Scholar
  125. Mason, B.: 1962–3, ‘The Carbonaceous Chondrites’,Space Sci. Rev. 1 (4), 621–646.Google Scholar
  126. Mason, B.: 1966, ‘Geochemistry and Meteorites’,Geochim. Cosmochim. Acta 30, 365–374.Google Scholar
  127. Mason, B.: 1967, ‘Meteorites’,Am. Scientist 55, 429–455.Google Scholar
  128. Mazor, E., Heymann, D., and Anders, E.: 1970, ‘Noble Gases in Carbonaceous Chondrites’,Geochim. Cosmochim. Acta 34 (7), 781–824.Google Scholar
  129. Meinschein, W. G.: 1963a, ‘Benzene Extracts of the Orgueil Meteorite’,Nature 197, 833–836.Google Scholar
  130. Meinschein, W. G.: 1963b, ‘Hydrocarbons in Terrestrial Samples and the Orgueil Meterotrie’,Space Sci. Rev. 2, 653–679.Google Scholar
  131. Meinschein, W. G.: 1964a, ‘Development of Hydrocarbon Analyses as a Means of Detecting Life in Space’, Quart. Rept., April, NASA Contract NASW-508.Google Scholar
  132. Meinschein, W. G.: 1964b, ‘Development of Hydrocarbon Analyses as a Means of Detecting Life in Space’, Quart. Rept., July, NASA Contract, NASW-508.Google Scholar
  133. Meinschein, W. G.: 1965, ‘Carbon Compounds in Terrestrial Samples and the Orgueil Meteorite’,Life Sci. Space Res. III, 165–181.Google Scholar
  134. Meinschein, W. G. and Kenny, G. S.: 1957, ‘Analysis of a Chromatographic Fraction of Organic Extracts of Soils’,Anal. Chem. 29, 1153–1161.Google Scholar
  135. Meinschein, W. G., Nagy, B., and Hennessy, D. J.: 1963, ‘Evidence in Meteorites of Former Life’,Ann. N.Y. Acad. Sci. 108, 553–579.Google Scholar
  136. Meinschein, W. G., Frondel, C., Laur, P., and Mislow, K.: 1966, ‘Meterorites: Optical Activity in Organic Matter’,Nature 154, 377–380.Google Scholar
  137. Miller, S. L.: 1955, ‘Production of some Organic Compounds Under Possible Primitive Earth Conditions’,J. Am. Chem. Soc. 77, 2351–2361.Google Scholar
  138. Millman, P. M.: 1970, ‘Meteorite Research’,Geochim. Cosmochim. Acta 34, 427.Google Scholar
  139. Minton, A. and Rosenberg, E.: 1964, ‘The Effect of Temperature on the Preservation of Purine and Pyrimidine Bases’,Geochim. Cosmochim. Acta 28, 1953.Google Scholar
  140. Monster, J., Anders, E., and Thode, H. G.: 1965, ‘34S/32S Ratios for the Different Forms of Sulphur in the Orgueil Meteorite and their Mode of Formation’,Geochim. Cosmochim. Acta 29, 773–779.Google Scholar
  141. Moore, C. B. and Gibson, E. K.: 1969, ‘Nitrogen Abundances in Chondritic Meteorites’,Science 163, 174–176.Google Scholar
  142. Moore, C. B. and Lewis, C.: 1965, ‘Carbon Abundances in Chondritic Meteorites’,Science 149, 317–318.Google Scholar
  143. Moore, C. B. and Lewis, C. F.: 1966, ‘The Distribution of Total Carbon Content in Enstatite Chondrites’,Earth Planet. Sci. Lett. 1, 376–378.Google Scholar
  144. Moore, C. B. and Lewis, C. F.: 1967, ‘Total Carbon Content of Ordinary Chondrites’,J. Geophys. Res. 72, 6289–6292.Google Scholar
  145. Mueller, G.: 1953, ‘The Properties and Theory of Genesis of the Carbonaceous Complex Within the Cold Bokevelt Meteorite’,Geochim. Cosmochim. Acta 4, 1–10.Google Scholar
  146. Mueller, G.: 1962, ‘Interpretation of Micro-structures in Carbonaceous Meteorites’,Nature 196, 929–932.Google Scholar
  147. Mueller, G.: 1963a, ‘Interpretation of Microstructures in Carbonaceous Meteorites’,Advances in Organic Geochemistry, Proc., International Meeting in Milan 1962, Pergamon Press, London, 1–22.Google Scholar
  148. Mueller, G.: 1963b, ‘Organic Cosmochemistry’, inOrganic Geochemistry (ed. by I. A. Breger), Pergamon Press, International Series of Monographs on Earth Sciences, Vol. 16, pp. 1–35.Google Scholar
  149. Mueller, G.: 1964, ‘Impact Contamination of the Mokoia Carbonaceous Chondrite’,Nature 204, 567.Google Scholar
  150. Mueller, G.: 1965, ‘Interpretation of Micro-structures in Carbonaceous Meteorites’,Nature 205, 1200–1201.Google Scholar
  151. Mueller, G.: 1966, ‘Significance of Inclusions in Carbonaceous Meteorites’,Nature 210, 151–155. (With comments by J. D. Bernal.)Google Scholar
  152. Mueller, G., Shaw, R. A., and Ogawa, T.: 1965, ‘Interrelationships between Volatilization Curves, Elemental Composition and Total Volatiles in Carbonaceous Chondrites’,Nature 206, 23–25.Google Scholar
  153. Murphy, Sister M. T. J. and Nagy, B.: 1966, ‘Symposium: Lipids of the Past and Present — Analysis for Sulfur Compounds in Lipid Extracts from the Orgueil Meteorite’,J. Am. Oil Chem. Soc. 43, 189–196.Google Scholar
  154. Murphy, Sister M. T. J., Nagy, B., Rouser, G., and Kritchevsky, G.: 1965, ‘Identification of Elementary Sulfur and Sulfur Compounds in Lipid Extracts by Thin Layer Chromatography’,J. Am. Oil Chem. Soc. 42, 475–480.Google Scholar
  155. Nagy, B.: 1965, ‘Optical Activity in the Orgueil Meteorite’,Science 150, 1846.Google Scholar
  156. Nagy, B.: 1966a, ‘A Study of the Optical Rotation of Lipids Extracted from Soils, Sediments, and the Orgueil Carbonaceous Meteorite’,Proc. Natl. Acad. Sci. 56, No. 2, 389–398.Google Scholar
  157. Nagy, B.: 1966b, ‘Investigations of the Orgueil Carbonaceous Meteorite’,Geol. Foren. Stockholm Forh. 88, 235–272.Google Scholar
  158. Nagy, B.: 1966, ‘Twenty Strange Meteorites’,Chemistry 39, (11), 9–13.Google Scholar
  159. Nagy, B.: 1968, ‘Carbonaceous Meteorites’,Endeavour 27, (101), 81–86.Google Scholar
  160. Nagy, B. and Andersen, C. A.: 1964, ‘Electron Probe Microanalysis of Some Carbonate, Sulfate and Phosphate Minerals in the Orgueil Meteorite’,Am. Minerologist 49, 1730–1736.Google Scholar
  161. Nagy, B. and Bradley, W. F.: 1954, ‘The Structural Theme of Sepiolite’,Acta Cryst. 7, 683.Google Scholar
  162. Nagy, B. and Bitz, Sister M. C.: 1963, ‘Long-chain Fatty Acids from the Orgueil Meteorite’,Arch. Biochem. Biophys. 101, 240–248.Google Scholar
  163. Nagy, B. and Claus, G.: 1964, ‘Mineralized Microstructures in Carbonaceous Meteorites’, Pergamon Press, International Series of Monographs on Earth Sciences, Vol. 15, pp. 109–114.Google Scholar
  164. Nagy, B. and Urey, H. C.: 1964, ‘A Symposium on Microanalysis and Carbonaceous Meteorites’,BioScience 14, 59–60.Google Scholar
  165. Nagy, B. and Urey, H. C.: 1969, ‘Organic Geochemical Investigations in Relation to the Analyses of Returned Lunar Rock Samples’.Life Sci. Space Res. 7, 31–46.Google Scholar
  166. Nagy, B., Claus, G., and Hennessy, D. J.: 1962, ‘Organic Particles Embedded in Minerals in the Orgueil and Ivuna Carbonaceous Chondrites’,Nature 193, 1129–1133.Google Scholar
  167. Nagy, B., Meinschein, W. G., and Hennessy, D. J.: 1961, ‘Mass Spectroscopic Analysis of the Orgueil Meteorite: Evidence for Biogenic Hydrocarbons’,Ann. N.Y. Acad. Sci. 93, 25–35.Google Scholar
  168. Nagy, B., Meinschein, W. G., and Hennessy, D. J.: 1962, ‘Discussion of Meteoritic Hydrocarbons and Extraterrestrial Life’,Ann. N.Y. Acad. Sci. 93, 658–660, 663–664.Google Scholar
  169. Nagy, B., Meinschein, W. G., and Hennessy, D. J.: 1963, ‘Aqueous, Low Temperature Environment of the Orgueil Meteorite Parent Body’,Ann. N.Y. Acad. Sci. 108, 534–552.Google Scholar
  170. Nagy, B., Fredriksson, K., Kudynowski, J., and Carlson, L.: 1963a, ‘Ultraviolet Spectra of Organized Elements’,Nature 200, 565–566.Google Scholar
  171. Nagy, B., Frederiksson, K., Urey, H. C., Claus, G., Andersen, C. A., and Percy, J.: 1963b, ‘Electron Probe Microanalysis of Organized Elements in the Orgueil Meteorite’,Nature 198, 121–125.Google Scholar
  172. Nagy, B., Murphy, Sister M. T. J., Modzeleski, V. E., Rouser, G., Claus, G., Hennessy, D. J., Colombo, U., and Gazzarrini, F.: 1964, ‘Optical Activity in Saponified Organic Matter Isolated from the Interior of the Orgueil Meteorite’,Nature 202, 228–233.Google Scholar
  173. Nagy, L. A., Kremp, G. O. W., and Nagy, B.: 1969, ‘Microstructures Approximating Hexagonal Forms (and of Unknown Origin) in the Orgueil Carbonaceous Meteorite’,Grana Palynol. 9 (1–3), 110–117.Google Scholar
  174. Nooner, D. W. and Oro, J.: 1967, ‘Organic Compounds in Meteorites: I. Aliphatic Hydrocarbons’,Geochim. Cosmochim. Acta 31, 1359–1394.Google Scholar
  175. Olson, R. J., Oro, J., and Zlatkis, A.: 1967, ‘Organic Compounds in Meteorites: II. Aromatic Hydrocarbons’,Geochim. Cosmochim. Acta 31, 1935–1948.Google Scholar
  176. Opik, E. J.: 1969, ‘Lunar Environment’,Sci. J. 5 (5), 67–72.Google Scholar
  177. Orcel, J. and Alpern, B.: 1967, ‘Carbon Distribution in Two Carbonaceous Meteorites’,Compt. Rend. Acad. Sci. Paris, Ser D,265, (13), 897–899.Google Scholar
  178. Oro, J.: 1963a, ‘Synthesis of Organic Compounds by Electric Discharges’,Nature 197, 862–867.Google Scholar
  179. Oro, J.: 1963b, ‘Synthesis of Organic Compounds by High-Energy Electrons’,Nature 197, 971–974.Google Scholar
  180. Oro, J.: 1963c, ‘Ultra-Violet-Absorbing Compound(s) Reported Present in the Murray Meteorite’,Nature 197, 756–758.Google Scholar
  181. Oro, J. and Guidry, C.L.: 1961, ‘Direct Synthesis of Polypeptides: 1. Polycondensation of Glycine in Aqueous Ammonia’,Arch. Biochem. Biophys. 93, 166–171.Google Scholar
  182. Oro, J. and Nooner, D. W.: 1967, ‘Aliphatic Hydrocarbons in Meteorites’,Nature 213, 1085–1087.Google Scholar
  183. Oro, J. and Gelpi, E.: 1969, ‘Gas Chromatographic Mass Spectrometric Studies on the Isoprenoids and Other Isomeric Alkanes in Meteorites’,Meteorite Res. Proc., Symp., 1968, 518–523, 537.Google Scholar
  184. Oro, J. and Skewes, H. B.: 1965, ‘Free Amino Acids on Human Fingers: The Question of Contamination in Microanalysis’,Nature 207, 1042–1045.Google Scholar
  185. Oro, J. and Tornabene, T.: 1965, ‘Bacterial Contamination of Some Carbonaceous Meteorites’,Science 150, 1046–1048.Google Scholar
  186. Oro, J., Gelpi, E., and Nooner, D. W.: 1968), ‘Hydrocarbons in Extraterrestrial Samples’,J. Brit. Interplanet. Soc. 21, 83–98.Google Scholar
  187. Oro, J., Updegrove, W. S., and Flory, D. A.: 1969, ‘Isotopic Carbon Analysis of Meteoric Organic Matter’,Sci. Tech. Aerospace Rep. 7, 3319.Google Scholar
  188. Oro, J., Nooner, D. W., Zlatkis, A., and Wikstrom, S. A.: 1966, ‘Paraffinic Hydrocarbons in the Orgueil, Murray, Mokoia and Other Meteorites’,Life Sci. Space Res. IV, (Proceedings of the 6th International Space Science Symposium, Mar del Plata, Argentina, 1965), 63–100.Google Scholar
  189. Otting, W. and Zahringer, J.: 1967, ‘Total Carbon Content and Primordial Rare Gases in Chondrites’,Geochim. Cosmochim. Acta 31, 1949–1960.Google Scholar
  190. Palik, P.: 1962, ‘Further Life-forms in the Orgueil Meteorite’,Nature 194, 1065.Google Scholar
  191. Palmer, P., Zuckerman, B., Buhl, D., and Snyder, L. E.: 1969, ‘Formaldehyde Absorption in Dark Nebulae’,Astrophys. J. 156, L147-L150.Google Scholar
  192. Papp, A.: 1963, ‘Discussion on Identity of Organized Elements’,Ann. N.Y. Acad. Sci. 108, 606–615.Google Scholar
  193. Pearson, R.: 1962, ‘Life-forms in Carbonaceous Chondrites’,Nature 194, 1064–1065.Google Scholar
  194. Pepin, R. O. and Signer, P.: 1965, ‘Primordial Rare Gases in Meteorites’,Science 149, 253–265.Google Scholar
  195. Pisani, M.: 1864, ‘Chemical Study and Analysis of the Orgueil Aerolith’,Compt. Rend. Acad. Sci. Paris 59, 132–135.Google Scholar
  196. Platt, J. R.: 1955, ‘The Postulation of Organic Interstellar Grains’,Astrophys. J. 123, 486–492.Google Scholar
  197. Ponnamperuma, C.: 1965, ‘Abiological Synthesis of Some Nucleic Acid Constituents,’ in theOrigins of Prebiological Systems (ed. by S. W. Fox), Academic Press, pp. 221–242.Google Scholar
  198. Ponnamperuma, C., Kvenvolden, K., Chang, S., Johnson, R., Pollock, G., Philpot, D., Kaplan, I., Smith, J., Schopf, W., Gehrke, C., Hodgson, G., Breger, I., Halpern, B., Duffield, A., Krauskopf, K., Barghoorn, E., Holland, H., and Keil, K.: 1970, ‘A Search for Organic Compounds in the Lunar Dust from the Sea of Tranquillity’,Science 147, 760–762.Google Scholar
  199. Raia, J.: 1966, M. S. Thesis, Department of Chemistry, University of Houston.Google Scholar
  200. Reed, G. W., Kigoshi, K., and Turkevich, A.: 1960, ‘Determinations of Concentrations in Heavy Elements in Meteorites by Activation Analysis’,Geochim. Cosmochim. Acta 20, 122–140.Google Scholar
  201. Ringwood, A. E.: 1961, ‘Chemical and Genetic Relationships Among Meteorites’,Geochim. Cosmochim. Acta. 24, 159–197.Google Scholar
  202. Ringwood, A. E.: 1965, ‘Origin of Chondrites’,Nature 207, 701–704.Google Scholar
  203. Ringwood, A. E.: 1966, ‘Genesis of Chondritic Meteorites’,Rev. Geophys. 4, 113–175.Google Scholar
  204. Robinson, R.: 1966, ‘The Origins of Petroleum’,Nature 212, 1291–1295.Google Scholar
  205. Rosenberg, E.: 1964, ‘Purine and Pyrimidines in Sediments from the Experimental Mohole’,Science 147, 1680.Google Scholar
  206. Ross, R.: 1963, ‘Discussion on Identity of Organized Elements’,Ann. N.Y. Acad. Sci. 108, 606–615.Google Scholar
  207. Rouy, A. L. and Carroll, B.: 1966, ‘Limitations of the Spectropolarimeter in Reference to Optical Activity in Meteorites’,Nature 212, 1458–1459.Google Scholar
  208. Schopf, J. W.: 1968, ‘Microflora of the Bitter Springs Formation, Late Precambrian, Central Australia’,J. Paleontol. 42, 651–688.Google Scholar
  209. Schulz, K. F. and Elofson, R. M.: 1965, ‘Electron Spin Resonance Studies of Organic Matter in the Orgueil Meteorite’,Geochim. Cosmochim. Acta 29, 157–160.Google Scholar
  210. Shaw, G. and Yeadon, A.: 1964, ‘Chemical Studies on the Constitution of Some Pollen and Spore Membranes’,Grana Palynol. 5, 247–252.Google Scholar
  211. Shaw, G. and Yeadon, A.: 1966, ‘Chemical Studies on the Constitution of Some Pollen and Spore Membranes’,J. Chem. Soc. (C), 1966, 16–22.Google Scholar
  212. Simmonds, P. G., Bauman, A. J., Bollin, E. M., Gelpi, E., and Oro, J.: 1969, ‘The Unextractable Organic Fraction of the Pueblito de Allende Meteorite: Evidence For its Indigenous Nature’,Proc. Natl. Acad. Sci. U.S. 64 (3), 1027–1034.Google Scholar
  213. Sisler, F. D.: 1961, ‘Organic Matter and Life in Meteorites’,Proc. Lunar Planet. Exploration Colloquium 2, 4, 67.Google Scholar
  214. Smith, J. W. and Kaplan, I. R.: 1970, ‘Endogenous Carbon in Carbonaceous Meteorites’,Science 167, 1367–1370.Google Scholar
  215. Snyder, L. E., Buhl, D. and Zuckerman, B.: 1969, ‘Microwave Detection of Interstellar Formaldehyde’,Phys. Rev. Lett. 22, 679–681.Google Scholar
  216. Staplin, F. L.: 1962a, ‘Microfossils from the Orgueil Meteorite’,Micropaleontology 8, 343–347.Google Scholar
  217. Staplin, F. L.: 1962b, ‘Organic Remains in Meteorites — A Review of the Problem’,J. Alberta Soc. Petrol. Geologists 10, 575–580.Google Scholar
  218. Staplin, F. L.: 1963, ‘Comments on Extra-Terrestrial Taxa’,Taxon 12, (1), 14–15.Google Scholar
  219. Staplin, F. L.: 1965, ‘Organic Remains in Meteorites’, inCurrent Aspects of Exobiology (ed. by G. Mamikunian and M. H. Briggs), Pergamon Press for Jet Propulsion Laboratory Pasadena, California, pp. 77–92.Google Scholar
  220. Studier, M. H.: 1969, ‘Origin of Organic Matter in Meteorites,Extra-terr. Matter’, Proc. Conf. 3rd (1968), pp. 25–56.Google Scholar
  221. Studier, M. H., Hayatsu, R., and Anders, E.: 1965, ‘Organic Compounds in Carbonaceous Chondrites’,Science 149, 1455–1459.Google Scholar
  222. Studier, M. H., Hayatsu, R., and Anders, E.: 1968, ‘Origin of Organic Matter in Early Solar System: I. Hydrocarbons’,Geochim. Cosmochim. Acta 32, 151–173.Google Scholar
  223. Tasch, P.: 1963, ‘Identity of Organized Elements in Carbonaceous Chondrites’,Science 142, 156–158.Google Scholar
  224. Tasch, P.: 1964, ‘Life-forms in Meteorites and the Problem of Terrestrial Contamination: A Study in Methodology’,Ann. N.Y. Acad. Sci. 105, 927–950.Google Scholar
  225. Taylor, H. P. Jr., Duke, M. B., Silver, L. T., and Epstein, S.: 1965, ‘Oxygen Isotope Studies in Minerals in Stony Meteorites’,Geochim. Cosmochim. Acta 29, 489–512.Google Scholar
  226. Timofejew, B. W.: 1963, ‘Traces of Life in Meteorites. Results of a Microphytological Analysis’,Grana Palynol. 4, 92–99.Google Scholar
  227. Turner, B. E.: 1970, ‘Cyanoacetylene is the Largest Molecule yet to be Discovered in Interstellar Space’,Chem. Eng. New 48, (34), 31.Google Scholar
  228. Ulbricht, T. L. V.: 1962, ‘The Optical Asymmetry of Metabolites’,Comparative Biochem. 4, Constituents of Life — Part B (ed. by M. Florkin and H. S. Mason), Academic Press, 1–25.Google Scholar
  229. Urey, H. C.: 1961, ‘Criticism of Dr. B. Mason's Paper on “The Origin of Meteorites”’,J. Geophys. Res. 66, 1988–1991.Google Scholar
  230. Urey, H. C.: 1962a, ‘Origin of Life-Like Forms in Carbonaceous Chondrites’,Nature 193, (4821), 1119–23. Organized Elements in Carbonaceous Chondrites — Fitch, Schwarcz and Anders, 1123–1125. Complex Organic Microstructures in the Mokoia Meteorite — Briggs and Kitto, 1126–1127, Comments — Bernal, 1127–1129, Organic Particles in Minerals in the Orgueil and Ivuna Carbonaceous Chondrites, Nagy, Claus and Hennessy, 1129–1133.Google Scholar
  231. Urey, H. C.: 1962b, ‘Origin of Life-like Forms in Meteorites’,Science 137, 623–628.Google Scholar
  232. Urey, H. C.: 1965a, ‘Meteorites and the Moon’,Science 147, 1262–1265.Google Scholar
  233. Urey, H. C.: 1965b, ‘Review of Evidence for Biological Material in Meteorites’, NASA Accession #N65-36390, Dept. No. NASA-CR-67486 31 pp.Google Scholar
  234. Urey, H. C.: 1965c, ‘A Review of Evidence for Biological Material in Meteorites’,Sci. Tech. Aerospace Rept. 3, 4108–9.Google Scholar
  235. Urey, H. C.: 1966a, ‘Biological Material in Meteorites: A Review’,Science 151, 157–166.Google Scholar
  236. Urey, H. C.: 1966b, ‘Carbonaceous Matter in Meteorites’, Am. Chem. Soc., San Francisco, 17 October.Google Scholar
  237. Urey, H. C.: 1966c, ‘Chemical Evidence Relative to the Origin of the Solar System’, Monthly Notices Roy. Astron. Soc.131, 199–223.Google Scholar
  238. Urey, H. C.: 1967a, ‘Parent Bodies of the Meteorites and the Origin of Chondrules’,Icarus 7, 350–359.Google Scholar
  239. Urey, H. C.: 1967b, ‘The Abundance of the Elements with Special Reference to the Problem of the Iron Abundance’,Quart. J. Roy. Astron. Soc. 8, 23–47.Google Scholar
  240. Urey, H. C.: 1968, ‘The Origin of Some Meteorites from the Moon’,Naturwissenschaften,55, 49–57.Google Scholar
  241. Urey, H. C. and Craig, H.: 1953, ‘The Composition of the Stone Meteorites and the Origin of the Meteorites’,Geochim. Cosmochim. Acta,4, 36–82.Google Scholar
  242. Urey, H. C. and Lewis, J. S.: 1966, ‘Organic Matter in Carbonaceous Chondrites’,Science 152 (3718), 102–104; Comments by Burlingame, A. L. and Schnoes, H. K., p. 104–106; Comments by Studier, M. H., Hayatsu, R., and Anders, E., p. 106–107.Google Scholar
  243. Urey, H. C., Bernal, J. D., Cholnoky, B. J., Fox, S. W., Ross, R., Claus, G., Fitch, F. W., Nagy, B., Berger, R., Meinschein, W. G., Hennessy, D. J., Anders, E., Morrison, P., Tasch, P., Papp, A., Palmer, C. M., Bourrelly, P., Dombrowski, H., and Mason, B.: 1963, ‘Discussion of the Identity of Organized Elements in Carbonaceous Chondrites’,Ann. N.Y. Acad. Sci. 108, 606–615.Google Scholar
  244. Vallentyne, J. R.: 1965, ‘Two Aspects of the Geochemistry of Amino Acids’, in theOrigins of Prebiological Systems (ed. by S. W. Fox), Academic Press, pp. 105–125.Google Scholar
  245. VanLandingham, S. L.: 1965, ‘Evidence for Microfossils in the Alais and Orgueil Carbonaceous Meteorites’,Nature 208, 947–948.Google Scholar
  246. Van Schmus, W. R. and Wood, J. A.: 1967, ‘A Chemical-Petrological Classification for the Chondritic Meteorites’,Geochim. Cosmochim. Acta 31, 747–765.Google Scholar
  247. Vdovykin, G. P.: 1964a ‘Carbonaceous Matter in Meteorites and its Origin’,Geochemistry 1964, No. 4, 299–307.Google Scholar
  248. Vdovykin, G. P.: 1964b, ‘“Organized Elements” in Carbonaceous Chondrites’,Geochem. Intern. 1, 693–697.Google Scholar
  249. Vdovykin, G. P.: 1965, ‘Origin of Carbonaceous Chondrites’,Meteoritika 26, 151–168.Google Scholar
  250. Vdovykin, G. P.: 1966, ‘Organic Compounds of Carbonaceous Chondrites-II’,Meteoritika 27, 41–52.Google Scholar
  251. Villee, F., Duchesne, J., and Depireux, J.: 1964, ‘Free Radicals in Carbonaceous Meteorites’,Compt. Rend. Acad. Sci. Paris,258, 2376–2378.Google Scholar
  252. Vinogradov, A. P. and Vdovykin, G. P.: 1964, ‘Multimolecular Organic Matter of Carbonaceous Chondrites’,Geochim. Intern. 1, 831–836.Google Scholar
  253. Wiik, H. B.: 1956, ‘The Chemical Composition of Some Stony Meteorites’,Geochim. Cosmochim. Acta 9, 279–289.Google Scholar
  254. Wohler, M. F. and Hornes, M.: 1859, ‘Organic Substances in the Kaba Meteorite’,Sitzber. Akad. Wiss. Wien, Math-Naturwiss.,34, 7.Google Scholar
  255. Wood, J. A.: 1963a, ‘On the Origin of Chondrules and Chondrites’,Icarus 2, 152–180.Google Scholar
  256. Wood, J. A.: 1963b, ‘Physics and Chemistry of Meteorites’, inThe Solar System, Vol. IV:The Moon, Meteorites and Comets (ed. by G. P. Kuiper and B. M. Middlehurst), University of Chicago Press, 337–401.Google Scholar
  257. Wood, J. A.: 1967, ‘Chondrites: Their Metallic Minerals, Thermal Histories and Parent Planets’,Icarus 6, 1–49.Google Scholar
  258. Zahringer, J.: 1966, ‘Primordial Argon and the Metamorphism of Chondrites’,Earth Planet. Sci. Lett. 1, 379–382.Google Scholar
  259. Zetsche, F., Kalt, P., Liechti, J., and Ziegler, E.: 1937, ‘Membrane of Spores and Pollen: XI. Constitution of Lycopodium-sporonin, Tasmanin and Fossil Sporonins’,J. Prakt. Chem. 148, 267–286.Google Scholar


  1. Brongniart, M.: 1864, ‘Météore lumineux et chute de pierres météroriques du 14 Mai’,Compt. Rend. Acad. Sci. Paris 58, 932.Google Scholar
  2. Daubrée, M.: 1864, ‘Communication de M. Daubrée, d'après sa correspondance et celle de M. Le Verrier’,58, 932–934.Google Scholar
  3. Leymerie, M.: 1864, ‘The Orgueil Aerolith (Tarn-et-Garonne) which Fell at 8 in the Evening of May 14, 1864’,58, 988–990.Google Scholar
  4. Laroque and Bianchi: 1864, ‘A Note on the Aerolith of May 14’,58, 1164.Google Scholar
  5. Paquerée, M.: 1864, ‘Météore lumineux observé à Castillon (Gironde)’,58, 910.Google Scholar
  6. Laussedat, M.: 1864, ‘On the Trajectory of the Bolide of May 14 and a Response to the Recent Remarks of M. Lespiault’,59, 74–76.Google Scholar
  7. Laussedat, M.: 1864, ‘The Method Used to Determine the Trajectory of the Bolide of May 14’,58, 1100–1105.Google Scholar
  8. Lavrukhina, A. K. and Ustinova, G. K.: 1969, ‘Criticism of the Lunar Hypothesis of the Origin of Meteorites’,Dokl. Akad. Nauk SSSR 187, (2), 432–435.Google Scholar
  9. Lespiault: 1964, ‘A Note on the Bolide of May 14’,Compt. Rend. Acad. Sci. Paris 58, 1212–1213.Google Scholar
  10. Letter of M. Vidaillet to M. Le Verrier: 1964,58, 934.Google Scholar
  11. Letter of M. D'Esparbes to M. Le Verrier: 1864,58, 934.Google Scholar
  12. Letter of M. P. De Lafitte to M. Le Verrier: 1864,58, 935.Google Scholar
  13. Letter of M. Berge, curé à la Magdalène, communicated by M. de Marechal Vaillant: 1864,58, 936.Google Scholar
  14. Letter of M. Beraul to M. Le Verrier: 1864,58, 936.Google Scholar
  15. Letter of M. Jollois to M. Le Verrier: 1864,58, 936–937.Google Scholar
  16. New assignments-Daubrée: 1864,ibid. Compt. Rend. Acad. Sci. Paris 58, 1065–1066.Google Scholar
  17. Letter of Cruzel by Lespiault: 1864,58, 1069.Google Scholar
  18. Extract from a journal of Periguex: 1864,ibid. Compt. Rend. Acad. Sci. Paris 58, 1069–1070.Google Scholar
  19. Letter of Madame De Puylaroque to Petit: 1864,58, 1070.Google Scholar
  20. Letter of Monseigneur L'Evêque to Daubrée: 1864,58, 1070.Google Scholar
  21. Letter of Triger to Daubrée: 1864,58, 1071.Google Scholar
  22. Letter of Hende to Le Verrier; 1864,58, 1071–1072.Google Scholar
  23. Letter of Leymerie to Daubrée; 1864,58, 1072.Google Scholar
  24. Letter of Lespiault to Le Verrier: 1864,58, 1066.Google Scholar
  25. Letter of Lespiault to Le Verrier, M. Bagel: 1864,58, 1066–1067.Google Scholar
  26. Letter of M. Lajou to M. Petit: 1864,58, 1067.Google Scholar
  27. Letter of Pauliet to Petit: 1864,58, 1067–1068.Google Scholar
  28. Letter of Jacquot to Daubrée: 1864,58, 1068.Google Scholar
  29. Letter of Paructeau-Leon to Petit: 1864,58, 1068.Google Scholar
  30. Letter of Saint Amans to Petit: 1864,58, 1069.Google Scholar
  31. Letter of Laurentie to Grimaud: 1864,58, 1069.Google Scholar

Copyright information

© D. Reidel Publishing Company 1971

Authors and Affiliations

  • Bruce L. Baker
    • 1
  1. 1.Exobiology Research GroupUniversity of CalgaryCalgary 44Canada

Personalised recommendations