Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Identification and partial characterization of two species-specific repeat families in the great millet (Sorghum vulgare, Poaceae) genome

Abstract

The 1.4 kbp Xba I and the 1.3 kbp EcoRI repeat families in great millet were partially characterized with respect to their genomic distribution and their homology with the EcoRI and Xba I families of five other millet DNAs. The digestions of great millet DNA using increasing amounts of the two enzymes show that these two families are disperse in nature. The hybridization of these two families to the genomic digests of great millet indicates that they are arranged in a clustered and scrambled manner. Similarly, the hybridization with the EcoRI and Xba I digests of five other millet DNAs reveals the speciesspecific nature of these two repeat families. The latter also hybridize to the total repetitive fraction of great millet isolated at a highly stringent temperature of 75°C suggesting that the members of these two families are probably largely homogeneous.

This is a preview of subscription content, log in to check access.

References

  1. Appels, R., Moran, L. B., 1984: Molecular analysis of alien chromatin introduced into wheat. — InGustafson, J. P., (Ed.): 16th Stadler Genetics Symposium, pp. 529–557. — New York: Plenum.

  2. Ayonoadu, V., Rees, H., 1973: DNA synthesis in rye chromosomes. — Heredity30: 233–240.

  3. Baker, B., Schell, J., Lorz, H., Fedoroff, N., 1986: Transposition of the maize controlling element “Activator” in tobacco. — Proc. Natl. Acad. Sci. U.S.A.83: 4844–4848.

  4. Beckmann, J. S., Soller, M., 1983: Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs. — Theor. Appl. Genet.67: 35–43.

  5. Bedbrook, J. R., Jones, J., O'Dell, M., Thompson, R. D., Flavell, R. B., 1980: A molecular description of telomeric heterochromatin inSecale species. — Cell19: 545–560.

  6. Bennett, M. D., 1973: Meiotic, gametophytic and early endosperm development inTriticale. — InMacIntyre, E., Campbell, M., (Eds.):Triticale, pp. 137–148. — Ottawa: International Development Research Centre.

  7. , 1977: Heterochromatin, aberrant endosperm nucleic and grain shrivelling in wheat-rye genotypes. — Heredity39: 411–419.

  8. , 1981: Nuclear instability and its manipulation in plant breeding. — Philos. Trans. Roy. Soc. Ser. B292: 475–485.

  9. Botstein, D., White, R., Skolnick, M., Davis, R. W., 1980: Construction of a genetic linkage map in man using restriction fragment length polymorphisms. — Amer. J. Hum. Genet.32: 314–331.

  10. Dhar, M. S., Dabak, M. M., Gupta, V. S., Ranjekar, P. K., 1988: Organization and properties of repeated DNA sequences in rice genome. — Plant Sci.55: 43–52.

  11. Deshpande, V. G., Ranjekar, P. K., 1980: Repetitive DNA in threeGramineae species with low DNA content. — Hoppe-Seyler's Z. Physiol. Chem.361: 1223–1233.

  12. Evola, S. V., Burr, F. A., Burr, B., 1986: The suitability of restriction length polymorphism as genetic markers in maize. — Theor. Appl. Genet.71: 765–771.

  13. Fedoroff, N. V., Furtek, D. B., Nelson, O. E., 1984: Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element activator (Ac). — Proc. Natl. Acad. Sci. U.S.A.81: 3825–3829.

  14. Flavell, R. B., Rimpau, J., Smith, D. D., 1977: Repeated sequence DNA relationships in four cereal genomes. — Chromosoma (Berlin)63: 205–222.

  15. , 1981: Nucleotide sequence organization in plant chromosomes and evidence for sequence translocation during evolution. — Cold Spring Harbor Symp. Quant. Biol.45: 501–508.

  16. Gupta, V. S., Ranjekar, P. K., 1981: DNA sequence organization in finger millet (Eleusine coracana). — J. Biosci.3: 417–430.

  17. , 1982: Genome organization in pearl millet. — Indian J. Biochem. Biophys.19: 167–170.

  18. , 1985: Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding. — Pl. Mol. Biol.5: 109–117.

  19. Landry, B. S., Kesseli, R. V., Farrara, B., Michelmore, R. W., 1987a: A genetic map of lettuce (Lactuca sativa L.) with restriction fragment length polymorphisms, isozymes, disease resistance genes and morphological markers. — Genetics116: 331–337.

  20. , 1987b: Comparison of restriction endonucleases and sources of probes for their efficiency in detecting restriction fragment length polymorphisms in lettuce (Lactuca sativa L.). — Theor. Appl. Genet.74: 646–653.

  21. Maniatis, T., Fritsch, E. F., Sambrook, J., 1982: A laboratory manual. — New York: Cold Spring Harbor University.

  22. Marmur, J., 1961: A procedure for the isolation of deoxyribonucleic acid from microorganisms. — J. Mol. Biol.3: 208–218.

  23. Martin, C., Carpenter, R. M., Sommer, M., Saedler, H., Coen, E. S., 1985: Molecular analysis of instability in flower pigmentation ofAntirrhinum majus following isolation of thepallida locus by transposon tagging. — EMBO J.4: 1625–1630.

  24. McIntyre, C. L., Clarke, B. C., Appels, R., 1988: Application and dispersion of repeated DNA sequences in theTriticeae. — Pl. Syst. Evol.160: 39–59.

  25. Metzlaff, M., Troebner, W., Baldauf, F., Schlegel, R., Cullum, J., 1986: Wheat specific repetitive DNA sequences—Construction and characterization of four different genomic clones. — Theor. Appl. Genet.72: 207–210.

  26. Murray, M. G., Cuellar, R. E., Thompson, W. F., 1978: DNA sequence organization in the pea genome. — Biochem.17: 5781–5790.

  27. Paz-Ares, J., Wienand, V., Peterson, P. A., Saedler, H., 1986: Molecular cloning of the C. locus ofZea mays: a locus regulating the anthocyanin pathway. — EMBO J.5: 829–834.

  28. Ranjekar, P. K., Pallota, D., Lafontaine, J. G., 1976: Analysis of the genome of plants 2. Characterization of repetitive DNA in barley (Hordeum vulgare) and wheat (Triticum aestivum). — Biochim. Biophys. Acta425: 30–40.

  29. Rayburn, A. L., Gill, B. S., 1986: Isolation of a D-genome specific repeated DNA sequence fromAegilops squarrosa. — Pl. Mol. Biol. Rept.4: 102–109.

  30. Rigby, P. W. J., Diekmann, M., Rhodes, C., Berg, P., 1977: Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. — J. Mol. Biol.113: 237–251.

  31. Rimpau, J., Smith, D. B., Flavell, R. B., 1978: Sequence organization analysis of the wheat and rye genomes by interspecies DNA/DNA hybridization. — J. Mol. Biol.123: 327–359.

  32. , 1980: Sequence organization in barley and oats chromosomes revealed by interspecies DNA/DNA hybridization. — Heredity44: 131–149.

  33. Saul, M. W., Potrykus, I., 1984: Species-specific repetitive DNA used to identify interspecific somatic hybrids. — Pl. Cell Reports3: 65–67.

  34. Sivaraman, L., Ranjekar, P. K., 1984: Novel molecular features of millet genomes. — Ind. J. Biochem. Biophys.21: 299–303.

  35. , 1984: Molecular organization of great millet (Sorghum vulgare) DNA. — J. Biosci.6: 795–809.

  36. , 1986: DNA sequence organization in the genomes of three related millet plant species. — Pl. Mol. Biol.6: 375–388.

  37. Tanksley, S. D., Bernatsky, R., 1985: Molecular markers in plant breeding. — Crop Sci. Amer. 1985 Agron Meeting Abstr.25: 136.

  38. Vedel, F., Delseny, M., 1987: Repetitivity and variability of higher plant genomes. — Pl. Physiol. Biochem.25: 191–210.

  39. Vershinin, A. V., Salina, E. A., Svitashev, S. K., Shumny, V. K., 1987: The occurrence of Ds-like sequences in cereal genomes. — Theor. Appl. Genet.73: 428–432.

  40. Yunis, J. J., Yasmineh, W. G., 1971: Heterochromatin, satellite DNA, and cell function. — Science174: 1200–1209.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kumar, L.S., Gupta, V.S. & Ranjekar, P.K. Identification and partial characterization of two species-specific repeat families in the great millet (Sorghum vulgare, Poaceae) genome. Pl Syst Evol 171, 249–257 (1990). https://doi.org/10.1007/BF00940609

Download citation

Key words

  • Angiosperms
  • Poaceae
  • Sorghum vulgare
  • great millet
  • DNA hybridization
  • repetitive DNA