Journal of Optimization Theory and Applications

, Volume 75, Issue 3, pp 559–568 | Cite as

Cycles of fear: Periodic bloodsucking rates for vampires

  • R. F. Hartl
  • A. Mehlmann
  • A. Novak
Contributed Papers


In this paper, we present a new approach for modelling the dynamic intertemporal confrontation between vampires and humans. It is assumed that the change of the vampiristic consumption rate induces costs and that the vampire community also derives some utility from possessing humans and not only from consuming them. Using the Hopf bifurcation theorem, it can be shown that cyclical bloodsucking strategies are optimal. These results are in accordance with empirical evidence.

Key Words

Maximum principle limit cycles economics of human resources vampire myths 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Summers, M.,The Vampire in Europe, Kegan Paul, Trench, and Trubner, London, England, 1929.Google Scholar
  2. 2.
    Du Boulay, J.,The Greek Vampire: A Study of Cyclic Symbolism in Marriage and Death, Man: The Journal of the Royal Anthropological Institute of Great Britain and Ireland, Vol. 17, pp. 219–238, 1982.Google Scholar
  3. 3.
    Hartl, R. F., andMehlmann, A.,The Transylvanian Problem of Renewable Resources, Révue Française d'Automatique, Informatique et de Recherche Operationelle, Vol. 16, pp. 379–390, 1982.Google Scholar
  4. 4.
    Hartl, R. F., andMehlmann, A.,Convex-Concave Utility Function: Optimal Blood Consumption for Vampires, Applied Mathematical Modelling, Vol. 7, pp. 83–88, 1983.Google Scholar
  5. 5.
    King, S.,Salem's Lot, New American Library, New York, New York, 1969.Google Scholar
  6. 6.
    Snower, D.,Macroeconomic Policy and the Optimal Destruction of Vampires, Journal of Political Economy, Vol. 90, pp. 647–655, 1982.Google Scholar
  7. 7.
    Steindl, A., Feichtinger, G., Hartl, R. F., andSorger, G.,On the Optimality of Cyclical Employment Policies: A Numerical Investigation, Journal of Economic Dynamics and Control, Vol. 10, pp. 457–466, 1986.Google Scholar
  8. 8.
    Luhmer, A., Steindl, A., Feichtinger, G., Hartl, R. F., andSorger, G.,Adpuls in Continuous Time, European Journal of Operational Research, Vol. 34, pp. 171–177, 1988.Google Scholar
  9. 9.
    Dockner, E. J., andFeichtinger, G.,On the Optimality of Limit Cycles in Dynamic Economic Systems, Journal of Economics, Vol. 53, pp. 31–50, 1991.Google Scholar
  10. 10.
    Wirl, F.,Cyclical Strategies in Two-Dimensional Optimal Control Problems: Necessary Conditions and Existence, Annals of Operations Research, Vol. 37, pp. 345–356, 1992.Google Scholar
  11. 11.
    Feichtinger, G., Novak, A., andWirl, F.,Limit Cycles in Intertemporal Adjustment Models: Theory and Applications, Research Report, Department of Operations Research, Technische Universität Wien, 1992.Google Scholar
  12. 12.
    Hassard, B. D., Kazarinoff, N. D., andWan, Y. H.,Theory and Applications of Hopf Bifurcation, Mathematical Society, Lecture Notes, London, England, 1981.Google Scholar
  13. 13.
    Ascher, U., Christiansen, J., andRusell, R. D.,A Collocation Solver for Mixed-Order Systems of Boundary-Value Problems, Mathematics of Computation, Vol. 33, pp. 659–679, 1978.Google Scholar
  14. 14.
    Steindl, A.,Colsys,ein Kollokationsverfahren zur Lösung von Randwert-Problemen bein Systemen Gewöhnlicher Differentialgleichungen, Master's Thesis, Technische Universität Wien, 1981.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • R. F. Hartl
    • 1
  • A. Mehlmann
    • 1
  • A. Novak
    • 2
  1. 1.Department of Operations ResearchTechnische Universität WienWienAustria
  2. 2.Institute of StatisticsUniversität WienWienAustria

Personalised recommendations