Journal of Optimization Theory and Applications

, Volume 67, Issue 2, pp 297–320 | Cite as

Nonconvex separation theorems and some applications in vector optimization

  • C. Gerth
  • P. Weidner
Contributed Papers

Abstract

Separation theorems for an arbitrary set and a not necessarily convex set in a linear topological space are proved and applied to vector optimization. Scalarization results for weakly efficient points and properly efficient points are deduced.

Key Words

Separation theorems vector optimization efficiency weak efficiency proper efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nehse, R.,A New Concept of Separation, Commentationes Mathematicae Universitatis Carolinae, Vol. 22, pp. 169–179, 1981.Google Scholar
  2. 2.
    Hildenbrandt, R.,Trennung von Mengen und Dualität Nichtkonvexer Optimierungsprobleme, Technische Hochschule Ilmenau, Dissertation A, 1982.Google Scholar
  3. 3.
    Jahn, J.,Scalarization in Vector Optimization, Mathematical Programming, Vol. 29, pp. 203–218, 1984.Google Scholar
  4. 4.
    Weidner, P.,Dominanzmengen und Optimalitätsbegriffe in der Vektoroptimierung, Wissenschaftliche Zeitschrift der Technischen Hochschule Ilmenau, Vol. 31, pp. 133–146, 1985.Google Scholar
  5. 5.
    Weidner, P.,Charakterisierung von Mengen Effizienter Elemente in Linearen Räumen auf der Grundlage Allgemeiner Bezugsmengen, Martin-Luther-Universität Halle-Wittenberg, Dissertation A, 1985.Google Scholar
  6. 6.
    Henig, M. I.,Proper Efficiency with Respect to Cones, Journal of Optimization Theory and Applications, Vol. 36, pp. 387–407, 1982.Google Scholar
  7. 7.
    Lampe, U.,Dualität und Eigentliche Effizienz in der Vektoroptimierung, Seminarberichte der Sektion Mathematik der Humboldt-Universität zu Berlin, No. 57, pp. 45–54, 1981.Google Scholar
  8. 8.
    Jahn, J.,Mathematical Vector Optimization in Partially Ordered Linear Spaces, Peter Lang, Frankfurt am Main, Germany, 1986.Google Scholar
  9. 9.
    Kantorowitsch, L. W., andAkilow, G. P.,Funktionalanalysis in Normierten Räumen, Akademie-Verlag, Berlin, Germany, 1978.Google Scholar
  10. 10.
    Gerstewitz, C., andIwanow, E.,Dualität für Nichtkonvexe Vektoroptimierungsprobleme, Wissenschaftliche Zeitschrift der Technischen Hochschule Ilmenau, Vol. 31, pp. 61–81, 1985.Google Scholar
  11. 11.
    Holmes, R. B.,Geometric Functional Analysis and Its Applications, Springer, New York, New York, 1975.Google Scholar
  12. 12.
    Gerstewitz, C.,Nichtkonvexe Trennungssätze und Deren Anwendung in der Theorie der Vektoroptimierung, Seminarberichte der Sektion Mathematik der Humboldt-Universität zu Berlin, No. 80, pp. 19–31, 1986.Google Scholar
  13. 13.
    Yu, P. L.,Cone Convexity, Cone Extreme Points, and Nondominated Solutions in Decision Problems with Multiobjectives, Journal of Optimization Theory and Applications, Vol. 14, pp. 319–377, 1974.Google Scholar
  14. 14.
    Weidner, P.,Extensions of the Feasible Range Leaving Invariant the Efficient Point Set, Seminarberichte der Sektion Mathematik der Humboldt-Universität zu Berlin, No. 85, pp. 137–147, 1986.Google Scholar
  15. 15.
    Weidner, P.,On the Characterization of Efficient Points by Means of Monotone Functionals, Optimization, Vol. 19, pp. 53–69, 1988.Google Scholar
  16. 16.
    Weidner, P.,Monotone Funktionale, Dualkegel und Effiziente Elemente, Seminarberichte der Sektion Mathematik der Humboldt-Universität zu Berlin, No. 80, pp. 110–120, 1986.Google Scholar
  17. 17.
    Weidner, P.,The Influence of Neglecting Feasible Points and of Varying Preferences on the Efficient Point Set, Wissenschaftliche Zeitschrift der Technischen Hochschule Ilmenau, Vol. 33, pp. 181–188, 1987.Google Scholar
  18. 18.
    Weidner, P.,Complete Efficiency and Interdependencies between Objective Functions in Vector Optimization, Zeitschrift für Operations Research, Vol. 34, pp. 91–115, 1990.Google Scholar
  19. 19.
    Bernau, H.,Interactive Methods for Vector Optimization, Optimization in Mathematical Physics, Edited by B. Brosowski and E. Martensen, Peter Lang, Frankfurt am Main, Germany, pp. 21–36, 1987.Google Scholar
  20. 20.
    Brosowski, B.,A Criterion for Efficiency and Some Applications, Optimization in Mathematical Physics, Edited by B. Brosowski and E. Martensen, Peter Lang, Frankfurt am Main, Germany, pp. 37–59, 1987.Google Scholar
  21. 21.
    Bitran, G. R., andMagnanti, T. L.,The Structure of Admissible Points with Respect to Cone Dominance, Journal of Optimization Theory and Applications, Vol. 29, pp. 573–614, 1979.Google Scholar
  22. 22.
    Schönfeld, P.,Some Duality Theorems for the Nonlinear Vector Maximum Problem, Unternehmensforschung, Vol. 14, pp. 51–63, 1970.Google Scholar
  23. 23.
    Elster, K. H., andGöpfert, A.,Recent Results on Duality in Vector Optimization, Recent Advances and Historical Development of Vector Optimization, Edited by J. Jahn and W. Krabs, Springer, Berlin, Germany, pp. 129–136, 1987.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • C. Gerth
    • 1
  • P. Weidner
    • 2
  1. 1.Sektion MathematikTechnische Hochschule Leuna-MerseburgMerseburgGermany
  2. 2.Sektion MathematikMartin-Luther-Universität Halle-WittenbergHalleGermany

Personalised recommendations