Journal of Optimization Theory and Applications

, Volume 71, Issue 1, pp 67–83

Impulsive control systems with commutative vector fields

  • A. BressanJr.
  • F. Rampazzo
Contributed Papers

Abstract

We consider variational problems with control laws given by systems of ordinary differential equations whose vector fields depend linearly on the time derivativeu=(u1,...,um) of the controlu=(u1,...,um). The presence of the derivativeu, which is motivated by recent applications in Lagrangian mechanics, causes an impulsive dynamics: at any jump of the control, one expects a jump of the state.

The main assumption of this paper is the commutativity of the vector fields that multiply theuα. This hypothesis allows us to associate our impulsive systems and the corresponding adjoint systems to suitable nonimpulsive control systems, to which standard techniques can be applied. In particular, we prove a maximum principle, which extends Pontryagin's maximum principle to impulsive commutative systems.

Key Words

Commutativity of vector fields adjoint systems measurable functions optimal controls maximum principle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bressan, A.,Hyperimpulsive Motions and Controllable Coordinates for Lagrangian Systems, Atti dell'Accademia Nazionale dei Lincei, Memorie della Classe di Scienze Fisiche, Matematiche, e Naturali, Series VIII, Vol. 19, 1989.Google Scholar
  2. 2.
    Bressan, A.,On Some Control Problem Concerning the Ski and the Swing, Atti dell'Accademia Nazionale dei Lincei, Memorie della Classe di Scienze Fisiche, Matematiche, e Naturali, Series IX, Vol. 1, pp. 149–196, 1991.Google Scholar
  3. 3.
    Bressan, A.,On Some Recent Results in Control Theory for Their Applications to Lagrangian Systems, Atti dell'Accademia Nazionale dei Lincei, Memorie della Classe di Scienze Fisiche, Matematiche, e Naturali, Series VIII, Vol. 19, 1989.Google Scholar
  4. 4.
    Bressan, A.,On the Applications of Control Theory to Certain Problems for Lagrangian Systems and Hyperimpulsive Motions for These, Atti dell'Accademia Nazionale dei Lincei, Rendiconti della Classe di Scienze Fisiche, Matematiche, e Naturali, Vol. 82, pp. 91–118, 1988.Google Scholar
  5. 5.
    Rampazzo, F.,On Lagrangian Systems with Some Coordinates as Controls, Atti dell'Accademia Nazionale dei Lincei, Rendiconti della Classe di Scienze Fisiche, Naturali e Matematiche, Vol. 82, pp. 685–695, 1988.Google Scholar
  6. 6.
    Rampazzo, F.,On the Riemannian Structure of a Lagrangian System and the Problem of Adding Time-Dependent Constraints as Controls, European Journal of Mechanics/Solids, Vol. 10, No. 4, pp. 405–431, 1991.Google Scholar
  7. 7.
    Rishel, R. W.,An Extended Pontryagin Maximum Principle for Control Systems Whose Control Laws Contain Measures, SIAM Journal on Control, Vol. 3, pp. 191–205, 1965.Google Scholar
  8. 8.
    Schmaedeke, W. W.,Optimal Control Theory for Nonlinear Differential Equations Containing Measures, SIAM Journal on Control, Vol. 3, pp. 231–280, 1965.Google Scholar
  9. 9.
    Vinter, R. B., andPereira, F. M. F. L.,A Maximum Principle for Optimal Processes with Discontinuous Trajectories, SIAM Journal on Control and Optimization, Vol. 26, pp. 205–229, 1988.Google Scholar
  10. 10.
    Bressan, A., Jr., andRampazzo, F.,On Differential Systems with Vector-Valued Impulsive Controls, Bollettino dell'Unione Matematica Italiana, Serie B, Vol. 3, pp. 641–656, 1988.Google Scholar
  11. 11.
    Dal Maso, G., andRampazzo, F.,On Systems of Ordinary Differential Equations with Measures as Controls, Differential and Integral Equations, Vol. 4, pp. 739–765, 1991.Google Scholar
  12. 12.
    Rampazzo, F.,Optimal Impulsive Controls with a Constraint on the Total Variation, New Trends in Systems Theory, Edited by G. Conte, A. M. Perdon, and B. F. Wyman, Birkhauser, Boston, Massachusetts.Google Scholar
  13. 13.
    Bressan, A., Jr., andRampazzo, F.,Impulsive Control Systems Without Commutativity Assumptions, preprint SISSA 147, 1990.Google Scholar
  14. 14.
    Bressan, A., Jr.,On Differential Systems with Impulsive Controls, Rendiconti del Seminario Matematico dell'Università di Padova, Vol. 78, pp. 227–236, 1987.Google Scholar
  15. 15.
    Fleming, W. H., andRishel, R. W.,Deterministic and Stochastic Optimal Control, Springer-Verlag, New York, New York, 1975.Google Scholar
  16. 16.
    Lee, E. B., andMarkus, L.,Foundations of Optimal Control Theory, Krieger Publishing Company, Malabar, Florida, 1986.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • A. BressanJr.
    • 1
  • F. Rampazzo
    • 2
  1. 1.S.I.S.S.A.TriesteItaly
  2. 2.Department of Pure and Applied MathematicsUniversity of PadovaPadovaItaly

Personalised recommendations