Advertisement

Journal of Optimization Theory and Applications

, Volume 78, Issue 3, pp 443–463 | Cite as

Complex differential games of pursuit-evasion type with state constraints, part 2: Numerical computation of optimal open-loop strategies

  • M. H. Breitner
  • H. J. Pesch
  • W. Grimm
Contributed Papers

Abstract

In Part 1 of this paper (Ref. 1), necessary conditions for optimal open-loop strategies in differential games of pursuit-evasion type have been developed for problems which involve state variable inequality constraints and nonsmooth data. These necessary conditions lead to multipoint boundary-value problems with jump conditions. These problems can be solved very efficiently and accurately by the well-known multiple-shooting method. By this approach, optimal open-loop strategies and their associated saddle-point trajectories can be computed for the entire capture zone of the game. This also includes the computation of optimal open-loop strategies and saddle-point trajectories on the barrier of the pursuit-evasion game. The open-loop strategies provide an open-loop representation of the optimal feedback strategies. Numerical results are obtained for a special air combat scenario between one medium-range air-to-air missile and one high-performance aircraft in a vertical plane. A dynamic pressure limit for the aircraft imposes a state variable inequality constraint of the first order. Special emphasis is laid on realistic approximations of the lift, drag, and thrust of both vehicles and the atmospheric data. In particular, saddle-point trajectories on the barrier are computed and discussed. Submanifolds of the barrier which separate the initial values of the capture zone from those of the escape zone are computed for two representative launch positions of the missible. By this way, the firing range of the pursuing missile is determined and visualized.

Key Words

Differential games pursuit-evasion games open-loop strategies multiple shooting multipoint boundary-value problems saddle-point trajectories barrier trajectories missile firing range 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Breitner, M. H., Pesch, H. J., andGrimm, W.,Complex Differential Games of Pursuit-Evasion Type with State Constraints, Part 1: Necessary Conditions for Optimal Open-Loop Strategies, Journal of Optimization Theory and Applications, Vol. 78, pp. 419–441, 1993.Google Scholar
  2. 2.
    Järmark, B.,Convergence Control in Differential Dynamic Programming Applied to Air-to-Air Combat, AIAA Journal, Vol. 14, pp. 118–121, 1976.Google Scholar
  3. 3.
    Miele, A., Damoulakis, J. N., Cloutier, J. R., andTietze, J. L.,Sequential Gradient-Restoration Algorithm for Optimal Control Problems with Nondifferential Constraints, Journal of Optimization Theory and Applications, Vol. 13, pp. 218–255, 1974.Google Scholar
  4. 4.
    Eichberger, H.,Ein sequentieller Gradienten-Restaurations-Algorithmus zur Behandlung einer Klasse von differentiellen Spielen mit vorgegebener Spieldauer, Diploma Thesis, Department of Mathematics, Berlin University of Technology, Berlin, Germany, 1977.Google Scholar
  5. 5.
    Dolezal, I. A Gradient-Type Algorithm for the Numerical Solution of Two-Player Zero-Sum Differential Game Problems, Kybernetika, Vol. 14, pp. 429–446, 1978.Google Scholar
  6. 6.
    Quintana, V. H., andDavison, E. J.,Two Numerical Techniques to Solve Differential Game Problems, International Journal of Control, Vol. 16, pp. 465–474, 1972.Google Scholar
  7. 7.
    Tolwinski, B.,Numerical Solution of n-Person Nonzero-Sum Differential Games, Control and Cybernetics, Vol. 7, pp. 37–50, 1978.Google Scholar
  8. 8.
    Bulirsch, R.,Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung, Report of the Carl-Cranz Gesellschaft, Carl-Cranz Gesellschaft, Oberpfaffenhofen, Germany, 1971.Google Scholar
  9. 9.
    Stoer, J., andBulirsch, R.,Introduction to Numerical Analysis, Springer-Verlag, New York, New York, 1993.Google Scholar
  10. 10.
    Bayen, H.,Numerische Lösung von differentiellen Spielen mit der Mehrzielmethode, Diploma Thesis, Department of Mathematics, University of Cologne, Cologne, Germany, 1974.Google Scholar
  11. 11.
    Bulirsch, R., Montrone, F., andPesch, H. J.,Abort Landing in the Presence of a Windshear as a Minimax Optimal Control Problem, Part 1; Necessary Conditions, Journal of Optimization Theory and Applications, Vol. 70, pp. 1–23, 1991.Google Scholar
  12. 12.
    Bulirsch, R., Montrone, F., andPesch, H. J.,Abort Landing in the Presence of a Windshear as a Minimax Optimal Control Problem, Part 2; Multiple Shooting and Homotopy, Journal of Optimization Theory and Applications, Vol. 70, pp. 221–252, 1991.Google Scholar
  13. 13.
    Oberle, H. J.,Numerische Berechnung optimaler Steuerungen von Heizung und Kühlung für ein realistisches Sonnenhausmodell, Habilitationsschrift, Munich University of Technology, Munich, Germany, 1982.Google Scholar
  14. 14.
    Shinar, J., andGutman, S.,Three-Dimensional Optimal Pursuit and Evasion with Bounded Control, IEEE Transactions on Automatic Control, Vol. 25, pp. 492–496, 1980.Google Scholar
  15. 15.
    Gutman, S., andKatz, D.,On Guaranteed-Cost, Closed-Form Guidance via Simple Linear Differential Games, Proceedings of the 27th IEEE Conference on Decision and Control, Austin, Texas, pp. 1421–1424, 1988.Google Scholar
  16. 16.
    Guelman, M., Shinar, J., andGreen, A.,Qualitative Study of a Planar Pursuit-Evasion Game in the Atmosphere, Paper No. 88-4158-CP, Proceedings of the AIAA Guidance, Navigation, and Control Conference, Minneapolis, Minnesota, 1988.Google Scholar
  17. 17.
    Shinar, J., andGazit, S.,Optimal No-Escape Envelopes of Guided Missiles, Paper No. 85-1960, Proceedings of the AIAA Guidance, Navigation, and Control Conference, Snowmass, Colorado, 1985.Google Scholar
  18. 18.
    Oberle, H. J., andGrimm, W.,BNDSCO:A Program for the Numerical Solution of Optimal Control Problems, Internal Report No. 515-89/22, Institute for Flight Systems Dynamics, DLR, Oberpfaffenhofen, Germany, 1989.Google Scholar
  19. 19.
    Deuflhard, P.,Ein Newton-Verfahren bei fastsingulär Funktionalmatrix zur Lösung von nichtlinearen Randwertaufgaben mit der Mehrzielmethode, Dissertation, Department of Mathematics, University of Cologne, Cologne, Germany, 1972.Google Scholar
  20. 20.
    Breitner, M. H.,Numerische Berechnung der Barriere eines realistischen Differentialspiels, Diploma Thesis, Department of Mathematics, Munich University of Technology, Munich, Germany, 1990.Google Scholar
  21. 21.
    Katzir, S., Cliff, E. M., andLutze, F. H.,A Comparison of Dynamic Models for Optimal Midcourse Guifance, Proceedings of the AIAA Guidance, Navigation and Control Conference, Boston, Massachusetts, 1989.Google Scholar
  22. 22.
    Breitner, M. H., Grimm, W., andPesch, H. J.,Barrier Trajectories of a Realistic Missile/Target Pursuit-Evasion Game, Differential Games: Developments in Modelling and Computation, Edited by R. P. Hämäläinen and H. K. Ehtamo, Springer-Verlag, Berlin, Germany, pp. 48–57, 1991.Google Scholar
  23. 23.
    Isaacs, R.,Differential Games, John Wiley and Sons, New York, New York, 1965; see also Krieger, New York, New York, 3rd Printing, 1975.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • M. H. Breitner
    • 1
  • H. J. Pesch
    • 1
  • W. Grimm
    • 2
  1. 1.Department of MathematicsUniversity of TechnologyMunichGermany
  2. 2.Department of Flight Mechanics and ControlUniversity of StuttgartStuttgartGermany

Personalised recommendations