Advertisement

Journal of Optimization Theory and Applications

, Volume 62, Issue 3, pp 489–513 | Cite as

A solution method for regular optimal control problems with state constraints

  • H. X. Phu
Contributed Papers

Abstract

A method of region analysis is developed for solving a class of optimal control problems with one state and one control variable, including state and control constraints. The performance index is strictly convex with respect to the control variable, while this variable appears only linearly in the state equation. The convexity or linearity assumption of the performance index or the state equation with respect to the state variable is not required.

Key Words

Optimal control regular problems state constraints method of region analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, B. D. O., andMoore, J. B.,Linear Optimal Control, Prentice-Hall, Englewood Cliffs, New Jersey, 1971.Google Scholar
  2. 2.
    Bell, D. J., andJacobson, D. H.,Singular Optimal Control Problems, Academic Press, London, England, 1975.Google Scholar
  3. 3.
    McDanell, J. P., andPowers, W. F.,Necessary Conditions for Joining Optimal Singular and Nonsingular Subars, SIAM Journal on Control, Vol. 9, pp. 161–173, 1971.Google Scholar
  4. 4.
    Ioffe, A. D., andTichomirov, V. M.,Theorie der Extremalaufgaben, Translated from Russian by B. Luderer, VEB Deutscher Verlag der Wissenschaften, Berlin, GDR, 1979.Google Scholar
  5. 5.
    Phu, H. X.,Lineare Steuerungsprobleme mit Engen Zustandsbereichen, Optimization, Vol. 16, pp. 273–284, 1985.Google Scholar
  6. 6.
    Phu, H. X.,Some Necessary Conditions for Optimality for a Class of Optimal Control Problems Which Are Linear in the Control Variable, Systems and Control Letters, Vol. 8, pp. 261–271, 1987.Google Scholar
  7. 7.
    Phu, H. X.,A Method for Solving a Class of Optimal Control Problems Which Are Linear in the Control Variable, Systems and Control Letters, Vol. 8, pp. 273–280, 1987.Google Scholar
  8. 8.
    Phu, H. X.,On the Optimal Control of a Hydroelectric Power Plant, Systems and Control Letters, Vol. 8, pp. 281–288, 1987.Google Scholar
  9. 9.
    Phu, H. X.,Solution of Some High-Dimensional Linear Optimal Control Problems by the Method of Region Analysis, International Journal of Control, Vol. 47, pp. 493–518, 1988.Google Scholar
  10. 10.
    Phu, H. X.,On a Linear Optimal Control Problem of a System with Circuit-Free Graph Structure, International Journal of Control (to appear).Google Scholar
  11. 11.
    Phu, H. X., Lösung einer Eindimensionalen Regulären Aufgabe der Optimalen Steuerung mit Engen Zustandsbereichen Anhand der Methode der Bereichsanalyse, Optimization, Vol. 16, pp. 431–438, 1985.Google Scholar
  12. 12.
    Phu, H. X., Einige Notwendige Optimalitätsbedingungen für Einfache Reguläre Aufgaben der Optimalen Steurung, Zeitschrift für Analysis und Ihre Anwendungen, Vol. 5, pp. 465–475, 1986.Google Scholar
  13. 13.
    Phu, H. X., Reguläre Aufgaben der Optimalen Steurung mit Linearen Zustandsrestriktionen, Zeitschrift für Analysis und Ihre Anwendungen, Vol. 7, pp. 431–440, 1988.Google Scholar
  14. 14.
    Phu, H. X., Zur Stetigkeit der Lösung der Adjungierten Gleichung bei Aufgaben der Optimalen Steuerung mit Zustandsbeschränkungen, Zeitschrift für Analysis und Ihre Anwendungen, Vol. 3, pp. 527–539, 1984.Google Scholar
  15. 15.
    Kneschke, A.,Differentialgleichung und Randwertprobleme, Vol. 3, B. G. Teubner Verlagsgesellschaft, Leipzig, GDR, 1962.Google Scholar
  16. 16.
    Feichtinger, G., andHartl, R. F.,Optimale Kontrolle Ökonomischer Prozesse, Walter de Gruyter, Berlin, West Germany, 1986.Google Scholar
  17. 17.
    Phu, H. X.,Investigation of Some Inventory Problems with Linear Replenishment Cost by the Method of Region Analysis, Optimal Control Theory and Economic Analysis 3, Edited by G. Feichtinger, North-Holland, Amsterdam, Holland, pp. 195–221, 1988.Google Scholar
  18. 18.
    Pastor, K.,A Simple Macroeconomic Model with Ecological Technical Progress, Ekonomicko-Matematický Obzor, Vol. 22, pp. 320–326, 1986.Google Scholar
  19. 19.
    Phu, H. X., Zur Lösung einer Regulären Aufgabenklasse der Optimalen Steuerung im Großen mittels Orientierungskurven, Optimization, Vol. 18, pp. 65–81, 1987.Google Scholar
  20. 20.
    Phu, H. X., Zur Lösung eines Zermeloschen Navigationsproblems, Optimization, Vol. 18, pp. 225–236, 1987.Google Scholar
  21. 21.
    Phu, H. X., Ein Konstruktives Lösungsverfahren für das Problem des Inpolygons Kleinsten Umfangs von J. Steiner, Optimization, Vol. 18, pp. 349–359, 1987.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • H. X. Phu
    • 1
  1. 1.Institute of MathematicsNghia Do, HanoiVietnam

Personalised recommendations