Zero duality gaps in infinite-dimensional programming

  • V. Jeyakumar
  • H. Wolkowicz
Contributed Papers


In this paper we study the following infinite-dimensional programming problem: (P) μ≔inff0(x), subject toxC,fi(x)≤0,iI, whereI is an index set with possibly infinite cardinality andC is an infinite-dimensional set. Zero duality gap results are presented under suitable regularity hypotheses for convex-like (nonconvex) and convex infinitely constrained program (P). Various properties of the value function of the convex-like program and its connections to the regularity hypotheses are studied. Relationships between the zero duality gap property, semicontinuity, and ε-subdifferentiability of the value function are examined. In particular, a characterization for a zero duality gap is given, using the ε-subdifferential of the value function without convexity.

Key Words

Zero duality gaps convex-like infinite programs value function semi-infinite programming subdifferentiability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Charnes, A., Cooper, W. W., andKortanek, K. O.,Duality, Harr Programs, and Finite Sequence Spaces, Proceedings of the National Academy of Sciences, Vol. 48, pp. 782–786, 1962.Google Scholar
  2. 2.
    Glashoff, K., andGustafson, G. A.,Linear Optimization and Approximation, Springer-Verlag, Berlin, Germany, 1983.Google Scholar
  3. 3.
    Duffin, R. J., andKarlovitz, L. A.,An Infinite Linear Program with a Duality Gap, Management Science, Vol. 12, pp. 122–134, 1965.Google Scholar
  4. 4.
    Ekeland, I., andTemam, R.,Convex Analysis and Variational Problems, North-Holland, Amsterdam, Holland, 1976.Google Scholar
  5. 5.
    Rockafellar, R. T.,Conjugate Duality and Optimization, CBMS Lecture Notes Series, Vol. 162, SIAM Publications, Philadelphia, Pennsylvania, 1974.Google Scholar
  6. 6.
    Charnes, A., Cooper, W. W., andKortanek, K. O.,On Representations of Semi-Infinite Programs Which Have No Duality Gaps, Management Science, Vol. 12, pp. 113–121, 1965.Google Scholar
  7. 7.
    Karney, D. F.,A Duality Theorem for Semi-Infinite Convex Programs and Their Finite Subprograms, Mathematical Programming, Vol. 27, pp. 75–82, 1983.Google Scholar
  8. 8.
    Borwein, J. M.,How Special is Semi-Infinite Programming?, Semi-Infinite Programming and Applications, Edited by A. V. Fiacco and K. O. Kortanek, Springer-Verlag, Berlin, Germany, pp. 10–36, 1983.Google Scholar
  9. 9.
    Jeroslow, R. J.,Uniform Duality in Semi-Infinite Convex Optimization, Mathematical Programming, Vol. 27, pp. 144–154, 1983.Google Scholar
  10. 10.
    Ben-Israel, A., Charnes, A., andKortanek, K. O.,Duality and Asymptotic Solvability over Cones, Bulletin of the American Mathematical Society, Vol. 75, pp. 318–324, 1969.Google Scholar
  11. 11.
    Ben-Israel, A., Charnes, A., andKortanek, K. O.,Asymptotic Duality in Semi-Infinite Programming and Convex Core Topology, Rendiconti di Mathematica, Vol. 4, pp. 751–767, 1971.Google Scholar
  12. 12.
    Jeroslow, R. G.,A Limiting Lagrangian for Infinitely Constrained Convex Optimization, Journal of Optimization Theory and Applications, Vol. 33, pp. 479–495, 1981.Google Scholar
  13. 13.
    Kortanek, K. O.,Constructing a Perfect Duality in Infinite Programming, Applied Mathematics and Optimization, Vol. 3, pp. 358–372, 1977.Google Scholar
  14. 14.
    Borwein, J. M.,A Note on Perfect Duality and Limiting Lagrangians, Mathematical Programming, Vol. 18, pp. 330–337, 1980.Google Scholar
  15. 15.
    Fan, K., Minimax Theorems,Proceedings of the National Academy of Sciences, Vol. 39, pp. 42–47, 1953.Google Scholar
  16. 16.
    Jeyakumar, V.,Convex-Like Alternative Theorems and Mathematical Programming, Optimization, Vol. 16, pp. 643–652, 1985.Google Scholar
  17. 17.
    Craven, B. D., Gwinner, J., andJeyakumar, V.,Nonconvex Theorems of the Alternative and Minimization, Optimization, Vol. 18, pp. 151–163, 1987.Google Scholar
  18. 18.
    Borwein, J. M., andJeyakumar, V.,On Convex-Like Lagrangian and Minimax Theorems, University of Waterloo, Research Report No. 24, 1988.Google Scholar
  19. 19.
    Holmes, R. B.,Geometric Functional Analysis, Springer-Verlag, New York, New York, 1975.Google Scholar
  20. 20.
    Karney, D. F.,Clark's Theorem for Semi-infinite Convex Programs, Advances in Applied Mathematics, Vol. 2, pp. 7–12, 1981.Google Scholar
  21. 21.
    Clarke, F.,Optimization and Nonsmooth Analysis, John Wiley and Sons, New York, New York, 1983.Google Scholar
  22. 22.
    Hiriart-Urruty, J. B.,ε-Subdifferential Calculus, Convex Analysis and Applications, Edited by J. P. Aubin and R. B. Vinter, Vol. 57, pp. 43–92, 1982.Google Scholar
  23. 23.
    Ponstein, J.,Applying Some Modern Developments to Choosing Your Own Lagrange Multipliers, SIAM Review, Vol. 25, pp. 183–199, 1983.Google Scholar
  24. 24.
    Wolkowicz, H.,Optimality Conditions and Shadow Prices, Mathematical Programming with Data Perturbations, II, Edited by A. V. Fiacco, Marcel Dekker, New York, New York, 1983.Google Scholar
  25. 25.
    Rockafellar, R. T.,Generalized Directional Derivatives and Subgradients of Nonconvex Functions, Canadian Journal of Mathematics, Vol. 32, pp. 257–280, 1980.Google Scholar
  26. 26.
    Borwein, J. M., andStrojwas, H. M.,Directional Lipschitzian Mappings and Baire Spaces, Canadian Journal of Mathematics, Vol. 36, pp. 95–130, 1984.Google Scholar
  27. 27.
    Geoffrion, A. M.,Duality in Nonlinear Programming: A Simplified Applications-Oriented Development, SIAM Review, Vol. 13, pp. 1–37, 1971.Google Scholar
  28. 28.
    Kortanek, K. O., andRom, W. O.,Classification Schemes for the Strong Duality of Linear Programming over Cones, Operations Research, Vol. 7, pp. 1571–1585.Google Scholar
  29. 29.
    Kallina, C., andWilliams, A. C.,Linear Programming in Reflexive Spaces, SIAM Review, Vol. 13, pp. 350–376, 1971.Google Scholar
  30. 30.
    Kortanek, K. O.,Classifying Convex Extremum Problems over Linear Topologies Having Separation Properties, Journal of Mathematical Analysis and Applications, Vol. 46, pp. 725–755, 1974.Google Scholar
  31. 31.
    Rockafellar, R. T.,Convex Analysis, Princeton University Press, Princeton, New Jersey, 1969.Google Scholar
  32. 32.
    Dedieu, J. P., Critères de Fermeture pour l'Image d'un Fermé Nonconvex par une Multiplication, Comptes Rendus de l'Académie des Sciences, Vol. 287, pp. 941–943, 1978.Google Scholar
  33. 33.
    Anderson, E., andNash, P.,Linear Programming in Infinite-Dimensional Spaces, John Wiley and Sons, Chichester, England, 1987.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • V. Jeyakumar
    • 1
  • H. Wolkowicz
    • 2
  1. 1.Department of Applied MathematicsUniversity of New South WalesKensingtonAustralia
  2. 2.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada

Personalised recommendations