The star exponential and path integrals on compact groups II: The weyl character formula
Article
- 40 Downloads
Abstract
This is a continuation of the work begun by Cadavid and Nakashima inLett. Math. Phys.23, 111–115 (1991). An expression for the Weyl Character Formula is obtained in terms of the star-product path integral; and the relationship between the star-product path integral and the path integral developed on coadjoint orbits is established.
Mathematics Subject Classifications (1991)
81S10 81S40 53C80 43A77Preview
Unable to display preview. Download preview PDF.
References
- 1.Cadavid, A. C. and Nakashima, M., The star exponential and path integrals on compact groups,Lett. Math. Phys. 23, 111–115 (1991).Google Scholar
- 2.Hashimoto, T., Ogura, K., Okamoto, K., Sawae, R., and Yasunaga, H., Kirillov-Kostant theory and Feynman path integrals on coadjoint orbits I,Hokkaido Math. J. 20 (2) 353–405 (1991).Google Scholar
- 3.Hashimoto, T., Ogura, K., Okamoto, K., and Sawae, R., Kirillov-Kostant theory and Feynman path integrals on coadjoint orbits of SU(2) and SU(1, 1),Internat. J. Modern Phys. A 7 Suppl 1A, 377–390 (1992).Google Scholar
- 4.Hashimoto, T., Ogura, K., Okamoto, K., and Sawae, R., Borel-Weil theory and Feynman path integrals on flag manifolds,Hiroshima Math. J. (to appear).Google Scholar
- 5.Berline, N., Getzler, E., and Vergne, M.,Heat Kernels and Dirac Operators, Springer-Verlag, New York, 1991.Google Scholar
- 6.Alvarez, O., Singer, M., and Windey, P., Quantum mechanics and the geometry of the Weyl character formula,Nuclear Phys. B 337, 467–486 (1990).Google Scholar
Copyright information
© Kluwer Academic Publishers 1994